1、工程实践中有多种振动问题,如桥梁或建筑物的振动,机械机件的振动,飞机机翼的颤动等,还有一些稳定性分析及相关性分析问题,都可以转化为求矩阵特征值与特征向量的问题。
2、幂法是求矩阵最大模的特征值和相应特征向量的有效而简单的方法,特别适用于大型矩阵或稀疏矩阵,也是计算矩阵谱半径的有效方法,但是它的收敛速度是线性的,一般使用原点位移法或者Aitken外推加速技术加速收敛。
- 方法提出——设n x n阶实矩阵A的特征值λ_i满足| λ_1 | >| λ_2 | ≥ … ≥ | λ_n |, 且与λ_i相应的特征向量u_1,u_2,…,u _n线性无关。那么给定初始向量 x(0) ≠ 0,由迭代公式x(k+1) = Ax(k),产生向量序列{x(k)},当k充分大时,有λ_1 ≈ x_i(k+1) / x_i(k),相应的特征向量为x(k+1)。
- 基本思想——
- 特殊情况——如果x(0) 的选取恰恰使得α_1=0,幂法计算仍然能够进行,因为计算过程中舍入误差的影响,迭代若干次后必然产生一个向量x(k),它在u_1方向上的分量不为0;计算过程中可能出现溢出(|λ_1|>1)或成为0(|λ_1|<0)的情形,为了避免这一情形的出现,实际计算时每次迭代所求得的向量都要归一化。
3、归一化过程:
4、幂法的加速:幂法的收敛速度是线性的,并且依赖于比值|λ_2/λ_1|,称其为收敛因子,比值越小,收敛越快,当收敛因子接近于1时幂法收敛很慢,所以采用以下方法加快收敛速度。
- 原点移位法:
优缺点——使用简便,不足之处是λ_0选取十分困难,通常需要对特征值的分布有一定的了解,再进行粗略估计。 - 艾肯特(Aikten)加速:
5、反幂法是计算矩阵最小模的特征值和特征向量的有效方法,它的计算过程需要求解线性方程组,一般采用直接三角分解法,结合原点位移法,它可以修正某一指定的特征值及特征向量。
-
方法提出——
-
基本思想——
-
原点移位法——