数据驱动背景下的设备故障预测及诊断方法
设备故障预测
设备故障预测是PHM(Prognostics Health Management,故障预测和健康管理)的组成部分,指的是根据系统现在或者历史性能状态预测性地诊断部件或者系统完成其功能的状态(未来的健康状态),包括确定部件或者系统的剩余寿命或者正常工作的时间长度,其中,剩余寿命的研究分为两种:一直是估计或预测平均剩余寿命,另一种是计算剩余寿命的概率分布。
整个PHM方法体系中,预测是实现设备性能退化状态和剩余寿命预测的核心方法,故障预测方法的分类按照主流技术和应用研究有如下三类:基于可靠性模型的方法、基于物理模型的方法、基于数据驱动的方法。
1、基于可靠性模型的故障预测方法
通常基于可靠性模型或基于概率的PHM方法用于从过去的故障历史数据的统计特性角度进行故障预测,相比于其他两类方法,这种方法需要更少的细节信息,因为预测所需要的信息包含在一系列不用的概率密度函数(Probability Density Functions,PDFs,例如指数分布、正态分布、威布尔分布)中,不需要特定的数据或数据模型表述形式。优势在于上述概率密度函数可以通过对统计数据进行分析获得,从而对预测提供足够支持;另外该方法给出的预测结果含有置信度,该参数可以很好地表征预测结果的准确度。
典型的基于统计可靠性的故障概率曲线是著名的“浴盆曲线”。
- 在设备或系统运行之初,故障率相对较高;
- 经过一段时间稳定运行后故障率可以保持在相对较低的水准;
- 而后再经过一段时间运转,故障率又开始增加,直到所有部件或设备出现故障或失效。
基于可靠性的故障预测方法应用领域非常广泛,例如:预测汽车的可靠性,对整车的故障间隔里程进行预测——分析各零部件时效的分布规律,采用威布尔分布(一般产品或系统的失效随时间数据的变化趋势很好地符合威布尔分布)来预测汽车部件的寿命。
2、基于物理模型的故障预测方法
基于模型的故障预测技术一般要求对象系统的数学模型是已知的。该方法的典型例子是电池的容量预测,根据已有的历史数据建立容量预测模型,输入是电池的循环充放电周期,训练目标值是电池的容量,剩余寿命根据设定的失效阈值(电池的某个容量值)推算出电池还能有效充放电的周期数。此外,采用这种方法还可以通过对功能损伤的计算来评估关键零部件的损耗程度,实现设备的寿命预测,笔记本电脑的电池就是采用这种方式进行预测的。
该方法与预测对象的物理、电气等属性密切相关,不同的对象部件或单元物理模型差异很大,对物理设备更有效,对复杂的电子系统而言效果很差。因此该方法用在具有相对比较成熟的物理模型的对象包括机械材料、旋转机械部件、锂离子电池、大功率电子元器件等。
3、基于数据驱动的故障预测方法
在许多情况下,对于由不同信号引发的历史故障数据或者统计数据集,很难确认何种预测模型适用于预测;在研究许多实际的故障预测问题时,建立复杂部件或者系统的数学模型是很困难甚至不可能的,因此部件或者系统设计、仿真、运行和维护等各个阶段的测试、传感器历史数据就成为掌握系统性能下降的主要手段,这种基于测试或者传感器数据进行预测的方