剑指 Offer 42. 连续子数组的最大和

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

来源:力扣(LeetCode)

简单易懂的动态规划代码:

class Solution {
    public int maxSubArray(int[] nums) {
        int max=nums[0],sum=0;
        for(int num:nums){
            sum+=num;
            max=Math.max(sum,max);
            sum=Math.max(sum,0);
        }
        return max;
    }
}

使用dp数组存储,基本思想一致:

class Solution {
    public int maxSubArray(int[] nums) {
        int[] dp=new int[nums.length];
        dp[0]=nums[0];
        int max=nums[0];
        for(int i=1;i<nums.length;i++){
            dp[i]=Math.max(nums[i],dp[i-1]+nums[i]);
            max=Math.max(dp[i],max);
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值