输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
来源:力扣(LeetCode)
简单易懂的动态规划代码:
class Solution {
public int maxSubArray(int[] nums) {
int max=nums[0],sum=0;
for(int num:nums){
sum+=num;
max=Math.max(sum,max);
sum=Math.max(sum,0);
}
return max;
}
}
使用dp数组存储,基本思想一致:
class Solution {
public int maxSubArray(int[] nums) {
int[] dp=new int[nums.length];
dp[0]=nums[0];
int max=nums[0];
for(int i=1;i<nums.length;i++){
dp[i]=Math.max(nums[i],dp[i-1]+nums[i]);
max=Math.max(dp[i],max);
}
return max;
}
}