乘法逆元详解【费马小定理+扩展欧几里得算法】

乘法逆元

何为乘法逆元?

对于两个数 a , p a,p a,p gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1则一定存在另一个数 b b b,使得 a b ≡ 1 ( m o d    p ) ab\equiv1(\mod p) ab1(modp),并称此时的 b b b a a a关于 1 1 1 p p p的乘法逆元。我们记此时的 b b b i n v ( a ) inv(a) inv(a) a − 1 a^{-1} a1

举个例子: 5 × 3 ≡ 1 ( m o d    14 ) 5\times 3\equiv1(\mod 14) 5×31(mod14),我们称此时的 3 3 3 5 5 5关于 1 1 1 14 14 14的乘法逆元。

如何求乘法逆元?

方法一:费马小定理

费马小定理:当有两数 a , p a,p a,p满足 gcd ⁡ ( a , p ) = 1 \gcd(a,p)=1 gcd(a,p)=1 p p p是质数时,则有 a p ≡ a ( m o d    p ) a^{p}\equiv a(\mod p) apa(modp)

变一下形: a ⋅ a p − 2 ≡ 1 ( m o d    p ) a\cdot a^{p-2}\equiv1(\mod p) aap21(modp)。是不是和上面的乘法逆元的定义是相似的?

所以,我们可以使用快速幂求出 a p − 2 a^{p-2} ap2,即求出 a a a的逆元。

方法二:扩展欧几里得算法

由定义可知: a b ≡ 1 ( m o d    p ) ab\equiv 1(\mod p) ab1(modp),这个式子等价于已知 a , p a,p a,p求一个二元一次不定方程 a b = k p + 1 ab=kp+1 ab=kp+1,移一下项得: a b − k p = 1 ab-kp=1 abkp=1。这东西不是扩展欧几里得算法?

方法三:递推计算阶乘的逆元

当我们要计算一大串连续的阶乘的逆元时,采用费马小定理或扩展欧几里得算法就有可能超时,所以我们必须采用一个更快的算法。

f i = i ! f_i=i! fi=i!,则可得: i n v ( f i + 1 ) ≡ i n v ( f i ⋅ ( i + 1 ) ) ( m o d    p ) inv(f_{i+1})\equiv inv(f_i\cdot (i+1))(\mod p) inv(fi+1)inv(fi(i+1))(modp)

我们将 ( i + 1 ) (i+1) (i+1)乘过去,则有: i n v ( f i ) ≡ i n v ( f i + 1 ) ⋅ ( i + 1 ) ( m o d    p ) inv(f_{i})\equiv inv(f_{i+1})\cdot(i+1)(\mod p) inv(fi)inv(fi+1)(i+1)(modp)

自然我们就得出递推式。

方法四:递推计算连续的数的逆元

当我们要计算连续的数的逆元时,我们可以采用以下递推式: i n v ( i ) = ( p − ⌊ p i ⌋ ) × i n v ( p m o d    i ) m o d    p inv(i)=(p-\lfloor\frac{p}{i}\rfloor)\times inv(p\mod i)\mod p inv(i)=(pip)×inv(pmodi)modp

UPD@2019.10.9:补上这个式子的证明

证明:设 t = ⌊ p i ⌋ , k = p m o d    i t=\lfloor\frac{p}{i}\rfloor,k=p\mod i t=ip,k=pmodi,那么显然有 t × i + k ≡ 0 ( m o d    p ) t\times i+k\equiv 0(\mod p) t×i+k0(modp)

变形可得 − t × i ≡ k ( m o d    p ) -t\times i\equiv k(\mod p) t×ik(modp)

两边同时除以 i k ik ik得到 − t × 1 k ≡ 1 i ( m o d    p ) -t\times\frac{1}{k}\equiv\frac{1}{i}(\mod p) t×k1i1(modp)

i n v ( i ) ≡ − t × i n v ( k ) ( m o d    p ) inv(i)\equiv-t\times inv(k)(\mod p) inv(i)t×inv(k)(modp)

所以有 i n v ( i ) = ( p − ⌊ p i ⌋ ) × i n v ( p m o d    i ) m o d    p inv(i)=(p-\lfloor\frac{p}{i}\rfloor)\times inv(p\mod i)\mod p inv(i)=(pip)×inv(pmodi)modp

乘法逆元的作用?

我们由费马小定理可得: a ⋅ a p − 2 ≡ 1 ( m o d    p ) a\cdot a^{p-2}\equiv 1(\mod p) aap21(modp)

所以: a p − 2 ≡ a − 1 ≡ 1 a ( m o d    p ) a^{p-2}\equiv a^{-1}\equiv\frac{1}{a}(\mod p) ap2a1a1(modp)

我们又知道模运算的乘法结合律: b a ≡ b ⋅ a − 1 ≡ b ⋅ a p − 2 ( m o d    p ) \frac{b}{a}\equiv b\cdot a^{-1}\equiv b\cdot a^{p-2}(\mod p) abba1bap2(modp)

所以我们可以知道: a a a除以一个数模 p p p,等于 a a a乘这个数的乘法逆元模 p p p

编程实现

费马小定理:

long long PowMod(long long a,int b) {
	long long ret=1;
	while(b) {
		if(b&1)ret=ret*a%Mod;
		a=a*a%Mod;
		b>>=1;
	}
	return ret;
}

程序内调用PowMod(a,Mod-2)即可。

扩展欧几里得算法:

long long extend_gcd(long long a,long long b,long long &x,long long &y) {
	if(a==0&&b==0)
		return -1ll;
	if(b==0)
	{
		x=1ll;
		y=0ll;
		return a;
	}
	long long d=extend_gcd(b,a%b,y,x);
	y-=a/b*x;
	return d;
}
long long mod_reverse(long long a,long long n) {
    long long x,y,d=extend_gcd(a,n,x,y);
    if(d==1) {
	    if(x%n<=0)return x%n+n;
		else return x%n;
	} else return -1ll;
}

递推计算阶乘的逆元:

f[0]=1;
for(int i=1;i<=N;i++)
	f[i]=f[i-1]*i%Mod;
inv[0]=1;
inv[N]=PowMod(f[N],Mod-2);
for(int i=N-1;i>0;i--)
	inv[i]=inv[i+1]*(i+1)%Mod;

递推计算连续的数的逆元:

inv[1]=1;
for(int i=2;i<=N;i++)
	inv[i]=(Mod-Mod/i)*inv[Mod%i]%Mod;
  • 19
    点赞
  • 77
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值