首先,DDPG(Deep Deterministic Policy Gradient)是一种基于Actor-Critic的深度强化学习算法,可用于解决连续动作空间的问题。而路径规划是一种典型的强化学习问题,因此可以使用DDPG算法来解决路径规划问题。
在Python中,可以使用TensorFlow或PyTorch等深度学习框架来实现DDPG算法。同时,可以使用highway-env这个Python库作为强化学习环境,用于测试DDPG算法的效果。
下面是一个基于TensorFlow实现的DDPG算法的示例代码,用于解决路径规划问题:
```python
import tensorflow as tf
import numpy as np
import gym
import highway_env
from ddpg import DDPG
# 创建环境
env = gym.make('highway-v0')
# 设置DDPG算法的超参数
actor_lr = 0.0001
critic_lr = 0.001
gamma = 0.99
tau = 0.001
buffer_size = 1000000
batch_size = 64
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
# 创建DDPG对象
ddpg = DDPG(actor_lr, critic_lr, gamma, tau, buffer_size, batch_size, action_dim, state_dim)
# 训练DDPG算法
for i in range(5000):
obs = env.reset()
done = False
while not done:
action = ddpg.choose_action(obs)
next_obs, reward, done, info = env.step(action)
ddpg.store_transition(obs, action, reward, next_obs, done)
if len(ddpg.memory) > batch_size:
ddpg.learn()
obs = next_obs
# 测试DDPG算法的效果
obs = env.reset()
done = False
while not done:
action = ddpg.choose_action(obs)
next_obs, reward, done, info = env.step(action)
obs = next_obs
env.render()
```
在上面的代码中,DDPG类的实现可以参考如下代码:
```python
class DDPG:
def __init__(self, actor_lr, critic_lr, gamma, tau, buffer_size, batch_size, action_dim, state_dim):
self.actor_lr = actor_lr
self.critic_lr = critic_lr
self.gamma = gamma
self.tau = tau
self.batch_size = batch_size
self.action_dim = action_dim
self.state_dim = state_dim
self.memory = []
self.buffer_size = buffer_size
self.actor = self.build_actor()
self.critic = self.build_critic()
self.target_actor = self.build_actor()
self.target_critic = self.build_critic()
self.update_target_op = self.update_target_network()
# 创建Actor网络
def build_actor(self):
inputs = tf.keras.layers.Input(shape=(self.state_dim,))
x = tf.keras.layers.Dense(256, activation='relu')(inputs)
x = tf.keras.layers.Dense(128, activation='relu')(x)
outputs = tf.keras.layers.Dense(self.action_dim, activation='tanh')(x)
model = tf.keras.Model(inputs=inputs, outputs=outputs)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=self.actor_lr), loss='mse')
return model
# 创建Critic网络
def build_critic(self):
state_inputs = tf.keras.layers.Input(shape=(self.state_dim,))
state_x = tf.keras.layers.Dense(256, activation='relu')(state_inputs)
state_x = tf.keras.layers.Dense(128, activation='relu')(state_x)
action_inputs = tf.keras.layers.Input(shape=(self.action_dim,))
action_x = tf.keras.layers.Dense(128, activation='relu')(action_inputs)
x = tf.keras.layers.Concatenate()([state_x, action_x])
x = tf.keras.layers.Dense(128, activation='relu')(x)
outputs = tf.keras.layers.Dense(1)(x)
model = tf.keras.Model(inputs=[state_inputs, action_inputs], outputs=outputs)
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=self.critic_lr), loss='mse')
return model
# 更新目标网络
def update_target_network(self):
weights = []
targets = self.target_actor.weights
for i, weight in enumerate(self.actor.weights):
weights.append(weight * self.tau + targets[i] * (1 - self.tau))
self.target_actor.set_weights(weights)
weights = []
targets = self.target_critic.weights
for i, weight in enumerate(self.critic.weights):
weights.append(weight * self.tau + targets[i] * (1 - self.tau))
self.target_critic.set_weights(weights)
# 存储经验
def store_transition(self, state, action, reward, next_state, done):
self.memory.append([state, action, reward, next_state, done])
if len(self.memory) > self.buffer_size:
self.memory.pop(0)
# 选择动作
def choose_action(self, state):
state = np.array([state])
action = self.actor.predict(state)[0]
return action
# 学习
def learn(self):
minibatch = np.random.choice(self.memory, self.batch_size, replace=False)
states = np.array([transition[0] for transition in minibatch])
actions = np.array([transition[1] for transition in minibatch])
rewards = np.array([transition[2] for transition in minibatch])
next_states = np.array([transition[3] for transition in minibatch])
dones = np.array([transition[4] for transition in minibatch])
# 更新Critic网络
with tf.GradientTape() as tape:
next_actions = self.target_actor.predict(next_states)
target_next_q = self.target_critic.predict([next_states, next_actions])
target_q = rewards + self.gamma * target_next_q * (1 - dones)
q = self.critic.predict([states, actions])
critic_loss = tf.reduce_mean(tf.square(target_q - q))
critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables)
self.critic.optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables))
# 更新Actor网络
with tf.GradientTape() as tape:
actor_actions = self.actor.predict(states)
actor_loss = -tf.reduce_mean(self.critic([states, actor_actions]))
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
self.actor.optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
# 更新目标网络
self.update_target_network()
```
最后,运行上述代码,可以得到DDPG算法在highway-env环境下的路径规划效果。