整数N的因子相关问题

前提:假设整数N的各质因子为 p 1 , p 2 , … , p k p_1,p_2,\dots,p_k p1,p2,,pk,且这k个质因子次数分别为 e 1 , e 2 , … , e k e_1,e_2,\dots,e_k e1,e2,,ek,那么我们会有以下两个结论:

1. 整数N的所有因子(不是质因子)个数为: ( e 1 + 1 ) ∗ ( e 2 + 1 ) ∗ ⋯ ∗ ( e k + 1 ) (e_1+1)*(e_2+1)*\dots*(e_k+1) (e1+1)(e2+1)(ek+1),因为每个质因子 p i p_i pi都可能出现( 0 0 0次, 1 1 1次, … \dots , e i e_i ei次),每个质因子都有 e i + 1 e_i+1 ei+1种选择可能。

2.整数N的所有因子和为: ( 1 + p 1 + p 1 2 + ⋯ + p 1 e 1 ) ∗ ( 1 + p 2 + p 2 2 + ⋯ + p 2 e 2 ) ∗ ⋯ ∗ ( 1 + p k + p k 2 + ⋯ + p k e k ) (1+p_1+p_1^2+\dots+p_1^{e_1})*(1+p_2+p_2^2+\dots+p_2^{e_2})*\dots*(1+p_k+p_k^2+\dots+p_k^{e_k}) (1+p1+p12++p1e1)(1+p2+p22++p2e2)(1+pk+pk2++pkek)

根据等比数列求和公式,我们可以对第二个结论进行数学上的化简:

1 − p 1 e 1 + 1 1 − p 1 ∗ 1 − p 2 e 2 + 1 1 − p 2 ∗ ⋯ ∗ 1 − p k e k + 1 1 − p k \frac{1-p_1^{e_1+1}}{1-p_1}*\frac{1-p_2^{e_2+1}}{1-p_2}*\dots*\frac{1-p_k^{e_k+1}}{1-p_k} 1p11p1e1+11p21p2e2+11pk1pkek+1

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
对于这个问题,我们可以使用Pollard-Rho算法来解决。这个算法是一种基于随机化的算法,可以在多项式时间内完成因子分解。 具体来说,我们可以使用一个随机函数$f(x)$来生成一系列数列$x_0,x_1,x_2,\ldots$。每次通过计算$f(x_i)$得到下一个数$x_{i+1}$,然后计算$x_{i+1}$与$x_i$的最大公因数,如果找到了非1且不同于n的因子,那么我们就成功完成了因子分解。 具体的实现方法可以参考以下代码,其中rand()函数可以用C++的标准库函数来实现,例如使用srand(time(NULL))和rand()来生成随机数。 ```python #include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { return b == 0 ? a : gcd(b, a % b); } long long pollard_rho(long long n) { long long x = rand() % n, y = x, c = rand() % n, u = 1, v, t = 0; for (int lim = 1; lim; ) { x = y; for (int i = 1; i <= lim; ++i) { y = (y * y + c) % n; v = u * abs(y - x) % n; if (v == 0) return gcd(abs(x - y) / lim, n); if (++t == lim) u = v, lim <<= 1, t = 0; } } return n; } void factorize(long long n, vector<long long>& factors) { if (n == 1) return; if (n % 2 == 0) { factors.push_back(2); factorize(n / 2, factors); return; } if (n % 3 == 0) { factors.push_back(3); factorize(n / 3, factors); return; } if (n % 5 == 0) { factors.push_back(5); factorize(n / 5, factors); return; } if (n % 7 == 0) { factors.push_back(7); factorize(n / 7, factors); return; } if (n % 11 == 0) { factors.push_back(11); factorize(n / 11, factors); return; } if (n % 13 == 0) { factors.push_back(13); factorize(n / 13, factors); return; } if (n % 17 == 0) { factors.push_back(17); factorize(n / 17, factors); return; } if (n % 19 == 0) { factors.push_back(19); factorize(n / 19, factors); return; } if (n < 100000000) { for (int i = 23; i * i <= n; i += 2) { if (n % i == 0) { factors.push_back(i); factorize(n / i, factors); return; } } factors.push_back(n); return; } long long d = n; while (d == n) d = pollard_rho(n); factorize(d, factors); factorize(n / d, factors); } int main() { long long n = 200000000; vector<long long> factors; factorize(n, factors); sort(factors.begin(), factors.end()); for (int i = 0; i < (int)factors.size(); ++i) { cout << factors[i] << " "; } cout << endl; return 0; } ``` 在上述代码中,我们首先判断n是否是2、3、5、7、11、13、17、19中的一个,如果是,就直接将其作为因子加入结果中;否则,我们就调用pollard_rho函数来寻找n的一个因子d,然后递归地对d和n/d进行因子分解。在pollard_rho函数中,我们使用了Floyd判圈算法来寻找因子,这个算法的时间复杂度是O(sqrt(n)),因此总体时间复杂度是O(sqrt(n)logn),可以满足n>=200000000的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值