prim算法用来解决解决最小生成树问题,基本思想是对图G(V,E)设置集合S,存放已被访问的结点,然后每次从集合V-S中选择与集合S的最断距离的最小的一个顶点(记为u),访问并加入集合S。之后,令顶点u为中介点,优化所有从u能到达的顶点v与集合S之间的最短距离。执行n次(n为顶点数),知道集合S包含所有顶点。
prim算法适用于稠密图。
prim算法模板——邻接矩阵版:
#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int N = 500;
const int INF = 1000000000;
int G[N][N]; //图G
int n, m; //顶点数n,边数m
int d[N]; //顶点与集合S的最短距离
bool vis[N] = {
false }; //是否访问过,初始全为false
//默认从0开始,,返回最小生成树之和
int prim() {
int ans = 0; //边权和
fill(d, d + N, INF); //初始化d数组
d[0] = 0; //到自身距离为0
for (int i = 0; i < n; i++) {
int u = -1, MIN = INF;
//找一个距离最短的未访问过的结点
for (int j = 0; j < n; j++) {
if (vis[j] == false && d[j] < MIN) {
MIN = d[j];
u = j;
}
}
//找不到小于INF的d[u],则剩下的顶点和集合S不连通
if (u == -1)return -1;
vis[u] = true;
ans += d[u];
for (int v = 0; v < n; v++) {
if (vis[v] == false && G[u][v] != INF && G[u][v] < d[v]) {
d[v] = G[u][v];
}
}
}
return ans;
}
int main() {
scanf_s("%d%d", &n, &m);
int u, v, w;
fill(G[0], G[0] + N * N, INF); //初始化图G
for (<