杭电oj1233——最小生成树:prim算法+kruskal算法

本文详细介绍了如何使用prim算法和kruskal算法解决最小生成树问题,分别阐述了两种算法的基本思想和适用场景,并提供了算法模板。通过实例展示了算法的应用,帮助读者理解和掌握这两种经典图论算法。
摘要由CSDN通过智能技术生成

prim算法用来解决解决最小生成树问题,基本思想是对图G(V,E)设置集合S,存放已被访问的结点,然后每次从集合V-S中选择与集合S的最断距离的最小的一个顶点(记为u),访问并加入集合S。之后,令顶点u为中介点,优化所有从u能到达的顶点v与集合S之间的最短距离。执行n次(n为顶点数),知道集合S包含所有顶点。

prim算法适用于稠密图。

prim算法模板——邻接矩阵版:

#include <iostream>
#include <stdio.h>
#include <algorithm>
using namespace std;
const int N = 500; 
const int INF = 1000000000;
int G[N][N]; //图G
int n, m; //顶点数n,边数m
int d[N]; //顶点与集合S的最短距离
bool vis[N] = {
    false }; //是否访问过,初始全为false

//默认从0开始,,返回最小生成树之和
int prim() {
   
	int ans = 0; //边权和
	fill(d, d + N, INF); //初始化d数组
	d[0] = 0; //到自身距离为0
	for (int i = 0; i < n; i++) {
   
		int u = -1, MIN = INF; 
		//找一个距离最短的未访问过的结点
		for (int j = 0; j < n; j++) {
   
			if (vis[j] == false && d[j] < MIN) {
   
				MIN = d[j];
				u = j;
			}
		}
		//找不到小于INF的d[u],则剩下的顶点和集合S不连通
		if (u == -1)return -1;
		vis[u] = true;
		ans += d[u];
		for (int v = 0; v < n; v++) {
   
			if (vis[v] == false && G[u][v] != INF && G[u][v] < d[v]) {
   
				d[v] = G[u][v];
			}
		}
	}
	return ans;

}

int main() {
   
	scanf_s("%d%d", &n, &m);
	int u, v, w;
	fill(G[0], G[0] + N * N, INF); //初始化图G
	for (<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值