什么是多线程
理解:默认情况下,一个程序是由一个进程和一个线程,代码是依次执行的,而多线程则可以并发执行,一次性多个人多个事,自然比单线程更快。
用Python内置模块写一个多线程的程序
threading模块是Python中专门提供多线程编程的模块。threading模块中最常用的类是Thread。
单线程代码
# @Time : 2019/11/18 15:26
# @Author : 大数据小J
def coding():
for x in range(3):
print('%s正在写代码'%x)
time.sleep(1)
def drawing():
for x in range(3):
print('%s正在画图'%x)
time.sleep(1)
def sing_thread():
coding()
drawing()
if __name__ == '__main__':
sing_thread()
设置了代码运行停留时间,单线程代码一共花费了六秒
继承来自threading.Tread类
1、使用thread.curret_thread()
可以看到当前主线程的信息
2、使用thread.enumerate()
可以看到当前的线程
为了让线程代码更好的封装。可以使用threading模块中的Tread类,继承自这个类,然后实现类中的定义的类方法来实现,线程会自动运行类中的类方法
多线程代码如下:
# @Time : 2019/11/18 15:26
# @Author : 大数据小J
# @File : Python_多线程练习.py
import threading
import time
#创建一个类继承该多线程
class Write_data(threading.Thread):
def run(self):
the_thread = threading.current_thread() # threading.current_thread()这个方法获取主线程
for i in range(3):
print('%s正在写代码'%threading.enumerate()) #获取线程的名字
time.sleep(1)
#创建第二个类继承该多线程
class Dicture_data(threading.Thread):
def run(self):
the_thead = threading.current_thread()
for i in range(3):
print('%s正在执行其他结果'%threading.enumerate())
time.sleep(1)
#创建一个函数去进行两个类的调用
def main():
t1 = Write_data()
t2 = Dicture_data()
t1.start()
t2.start()
dif __name__ == '__main__':
main()
设置代码停留时间,多线程代码一共花费了3秒
多线程共享全局变量的问题
多线程都是在同一个进程中运行的。因测在进程中的全局变量所有的线程都是可共享的。这就造成了一个问题,因为线程执行的顺序是无序的。有可能会造成数据错误。
当不使用锁的时候,多线程共享中会造成数据错误
import threading
ticket = 0
def get_ticket():
global ticket
for x in range(10000000):
ticket += 1
print('ticket:%d'%ticket)
def main():
for x in range(2):
t = threading.Thread(target=get_ticket)
t.start()
if __name__ == '__main__':
main()
#运行结果:
# ticket:10814578
# ticket:11338345
锁机制和threading.LOCK类
为了解决共享全局变量的问题。threading提供了一个Lock类,这个可以在某个线程中访问某个类的时候加锁,其他线程此时就不能进来,直到当前线程处理完后,把锁释放了,其他线程才能进来处理代码如下:
import threading
ticket = 0
glock = threading.Lock()
def get_ticket():
global ticket
glock.acquire() #进行加锁
for x in range(10000000):
ticket += 1
glock.release() #释放锁
print('ticket:%d'%ticket)
def main():
for x in range(2):
t = threading.Thread(target=get_ticket)
t.start()
if __name__ == '__main__':
main()
#运行结果:
# ticket:10000000
# ticket:20000000
使用锁的原则:
1、把尽量少的代码和不耗时的代码放在锁中执行
2、代码执行完后记得释放锁
在Python中threading.Lock
是创建锁,lock.acquire()
是上锁操作,lock.release()
是释放锁操作
生产者和消费者模式
生产者和消费者模式是多线程开发中经常见到的一种模式。生产者的线程专门用来生产一些数据,然后存放到一个中间变量中。消费者再从这个中间的变量取出数据进行消费。通过生产者和消费者模式可以让代码高内聚低耦合的目标,程序的分工更加明确,线程更加的方便管理
Lock版的生产者和消费者模式
生产者和消费者因为中间要使用变量,中间变量经常是一些全局变量,因此需要使用锁来保证数据完整性。以下使用threading.Lock
锁实现”生产者和消费者模式“的一个例子
# @Time : 2019/11/19 20:17
# @Author : 大数据小J
# @File : Python_多线程lock版.py
import threading
import random
import time
gMoney = 0
# 在全局变量中创建一个锁
gLock = threading.Lock()
# 次数
gTimes = 0
# 创建一个生产者
class Producer(threading.Thread):
def run(self) -> None:
# 创建生产者模式
global gMoney
global gTimes
while True:
# 创建一个变量定义随机获取生产的钱数,并进行上锁和释放锁
gLock.acquire() # 上锁
if gTimes >= 10:
gLock.release()
break
money = random.randint(0, 100)
gMoney += money
gTimes += 1
print('%s生产者消费了%d' % (threading.current_thread().name, money))
gLock.release() # 释放锁
time.sleep(1)
# 创建一个消费者
class Consumer(threading.Thread):
def run(self) -> None:
# 创建消费者模式
global gMoney
global gTimes
while True:
# 创建一个变量定义随机消费的钱数,并进行上锁和释放锁
gLock.acquire()
money = random.randint(0, 100)
if gMoney >= money:
gMoney -= money
print('%s消费者消费了%d' % (threading.current_thread().name, money))
else:
if gTimes >= 10:
gLock.release()
break
print('%s消费了%d,但是余额只有%d' % (threading.current_thread().name, money, gMoney))
gLock.release()
time.sleep(1)
# 启动多线程模式
def main():
for i in range(5):
th = Producer(name='生产者%s' % (i))
th.start()
for i in range(5):
th = Consumer(name='消费者%s' % (i))
th.start()
if __name__ == '__main__':
main()
Condition版的生产者和消费者模式
Lock版本的生产者和消费者模式可以正常运行。但是存在一个不足,在消费者中通过while True死循环并且上锁的方式去判断钱够不够。上锁是一个很耗负CPU资源的行为。因此这种方式不是最好的,还有一种更好的方式便是使用thread.Condition
来实现。thread.Condition
可以在没有数据的时候处于阻塞等待状态。一旦有合适的数据了,还使用notify
相关的函数来通过其他处于等待的状态的线程。这样就可以做一些无用的上锁和解锁的操作。可以提高程序的性能。首先对threading.Condition
相关的函数做个介绍,threading.Condition
类似于thrading.Lock
,可以在修改全局数据的时候进行上锁,也可以在修改全局完毕后进行解锁。以下将一些常用的函数做简单的介绍:
1、acquire
:上锁。
2、release
:解锁
3、wait
:将当前线程处于等待状态,并且会释放锁。可以被其他线程使用notity
和notity_all
函数唤醒,被唤醒会继续等待上锁,上锁后会继续执行下面的代码。
4、notify
:通知某个正在等待的线程,默认是第1个等待的线程
5、notify_all
:通知所有正在等待的线程。notify
和notify_all
不会释放锁,并且需在release
之前调用
# @Time : 2019/11/19 23:20
# @Author : 大数据小J
# @File : Python——多线程Condition练习.py
#导入多线程模块
import threading
import random
import time
#生产的钱数
gMoney = 0
#
gTime = 0
#在全局中创建一个锁
gCondition = threading.Condition()
#创建一个生产者
class Producer(threading.Thread): #继承
def run(self) -> None:
#声明全部变量
global gMoney
global gTime
#上锁操作
while True:
gCondition.acquire()
if gTime >=10:
#释放掉锁
gCondition.release()
break
#随机生成钱数
money = random.randint(0,100)
gMoney += money
gTime += 1
print('%s生产者消费了%d' % (threading.current_thread().name, money))
#通知所有正在等待线程的锁
gCondition.notify_all()
#并进行上锁操作
gCondition.release()
time.sleep(1)
#创建一个消费者模式
class Consume(threading.Thread):
def run(self) -> None:
#声明全局变量
global gMoney
global gTime
while True:
gCondition.acquire()
money = random.randint(0,100)
while gMoney < money:
if gTime >= 10:
print('%s消费者消费了%d' % (threading.current_thread().name, money))
gCondition.release()
return
#线程将继续等待
print('%s消费了%d元钱,但是余额不足%d元钱,消费失败'%(threading.current_thread().name,money,gMoney))
gCondition.wait()
gMoney -= money
print('%s消费了%d元钱,剩余%d元钱' % (threading.current_thread().name, money, gMoney))
gCondition.release()
time.sleep(1)
# 启动多线程模式
def main():
for i in range(5):
th = Producer(name='生产者%s' % (i))
th.start()
for i in range(5):
th = Consume(name='消费者%s' % (i))
th.start()
if __name__ == '__main__':
main()