bzoj1003[ZJOI2006]物流运输:单源最短路 + DP

1003: [ZJOI2006]物流运输

Time Limit: 10 Sec   Memory Limit: 162 MB
Submit: 9005   Solved: 3861
[ Submit][ Status][ Discuss]

Description

  物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。

Input

  第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。

Output

  包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

Sample Input

5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5

Sample Output

32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32

HINT

Source

[ Submit][ Status][ Discuss]

首先这道题……最短路肯定是要有的,先不管它是干什么的。

然后,看一看范围n < 100, m < 20, 嗯,正解效率应该不会太高。

再看题目所求是最优解,嗯,dp没跑了。

分析完了大笑

然后推一推dp方程:

如果需要变道,那么肯定要加上一个k,然后如果在1~i天中的第j天变道,w[1][j] + w[j + 1][i]没跑了

什么?w怎么求,最短路啊

综上:方程为dp[i] = min(dp[i], dp[j] + w[j + 1][i] + K);

dp[]用最短路预处理一下,完了

code:

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 110;
const int MAXE = 3030;
const int INF = 2000000000;
template<class T>void read(T &g)
{
    g = 0;int fs = 0;int ch = getchar();
    while(ch < '0' || ch > '9')  {fs |= (ch == '-'); ch = getchar();}
    while(ch >=  '0'&&ch <= '9'){g = g * 10+(ch^48); ch = getchar();}
    g = fs ? - g : g;
    return;
}
int n, m, cnt, K, e, bro;
struct Edge {
    int to, nxt, val;
    Edge() {}
    Edge(int _to, int _nxt, int _val) : to(_to), nxt(_nxt), val(_val){}
}E[MAXE];
queue<int>Q;
int h[MAXN << 2], d[MAXN << 2];
bool vis[MAXN << 2];
inline void add_edge(int x, int y, int v) {
    E[++cnt] = Edge(y, h[x], v), h[x] = cnt;
    E[++cnt] = Edge(x, h[y], v), h[y] = cnt;
}
bool lnk[MAXN];
int SPFA(int source)
{
    d[source]=0; vis[source]=true;
    Q.push(source);
    while(!Q.empty())
    {
        int u = Q.front();
        Q.pop();
        vis[u]=false;
        for(int i = h[u]; ~i; i = E[i].nxt)
        {
            int v = E[i].to;
            if(d[v] > d[u] + E[i].val && !lnk[v])
            {
                d[v] = d[u] + E[i].val;
                if(!vis[v])
                {
                    Q.push(v);
                    vis[v] = true;
                }
            }
        }
    }
    return d[m];
}
void init() {
    memset(d, 0x7f, sizeof(d));
    memset(vis, 0, sizeof(vis));
}
int f[MAXN], w[MAXN][MAXN];
bool used[MAXN][MAXN];
void update(int x, int y) {
    memset(lnk, 0, sizeof(lnk));
    for(int i = 1; i <= m; i++)
        for(int j = x; j <= y; j++) lnk[i] |= used[i][j];
    init();
    w[x][y] = SPFA(1);
}
signed main() {
    memset(h, -1, sizeof(h));
    read(n), read(m), read(K), read(e);
    for(int i = 1, a, b, c; i <= e; i++) {
        read(a), read(b), read(c);
        add_edge(a, b, c);
    }
    read(bro);
    while(bro --) {
        int p, a, b;
        read(p), read(a), read(b);
        for(int i = a; i <= b; i++) used[p][i] = 1;
    }
    for(int i = 1; i <= n; i++)
        for(int j = i; j <= n; j++) 
            update(i, j);
    for(int i = 1; i <= n; i++) 
        for(int j = i; j <= n; j++) w[i][j] < INF ? w[i][j] *= (j - i + 1) : 0;
    for(int i = 1; i <= n; i++) f[i] = w[1][i];
    for(int i = 2;i <= n; i++) 
        for(int j = 1; j < i; j++) 
            f[i] = min(f[i], f[j] + w[j + 1][i] + K);
    printf("%d\n", f[n]);
    return 0;
}


  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值