基础知识 - 范数

范数

我们不能简单地按照元素大小比较不同的向量或者矩阵,所以给出了一种长度计量单位,也就是从向量空间R^{n} 到实数域R 的非负函数 \left \| v \right \| 为范数。意思就是把一堆数转化成一个数进行比较。

向量范数

满足条件:

1. 正定:对于所有的向量 v\in \mathbb{R}^{n} ,他们的范数 \left \| v \right \|\geqslant 0 ,并且只有 v=0 时才有 \left \| v \right \|= 0

2. 齐次:对于所有的向量 v\in \mathbb{R}^{n} 和 a\in \mathbb{R} , 存在 \left \| av \right \|=\left | a \right |\left \| v \right \|

3.三角不等式: 对于所有的向量 v\in \mathbb{R}^{n} 和 w\in \mathbb{R}^{n}, 存在 \left \| v+w \right \|\leqslant \left \| v \right \|+\left \| w \right \|

常用的向量范数为 lp 范数(p\geqslant 1)

其中p = 1,2,\infty 的情形最重要,分别记为 \left \| \cdot \right \|_{1}\left \| \cdot \right \|_{2}\left \| \cdot \right \|_{\infty }.在不引起歧义的情况下,我们有时省略 l2 范数的角标,记为 \left \| \cdot \right \|

\left \| \cdot \right \|_{1}  \large L1 范数是指向量中各个元素绝对值之和.

\left \| \cdot \right \|_{2}  \large L2范数是指向量各元素的平方和然后求平方根.

正定矩阵 A诱导的范数:\left \| x \right \|_{A}= \sqrt{x^{T}Ax}

矩阵范数

和向量范数类似,矩阵范数是定义在矩阵空间上的非负函数,并且满足正定性、齐次性和三角不等式.向量的 lp 范数可以比较容易地推广到矩阵的 lp 范数。

 当 p=1 时,矩阵 A\in \mathbb{R}^{m*n}l1 矩阵范数:

\left \| A \right \|_{1}=\sum_{i=1}^{m}\sum_{j=1}^{n}\left | a_{ij} \right |

 也就是所有的数加和,即 \left \| A \right \|_{1} 为 A 中所有元素绝对值的和。

当 p = 2 时,此时得到的是矩阵的 Frobenius 范数(下称 F 范数),记为 \left \| A \right \|_{F} ,它可以看成是向量 l2 范数的推广(矩阵的迹(tr)等于矩阵主对角线元素之和,也等于矩阵的全部特征值之和。):

\left \| A \right \|_{F}=\sqrt{Tr(AA^{T})}=\sqrt{\sum_{i,j}^{}(a_{ij})^2}

即所有元素平方和开根号。

矩阵 p 范数总结: A=(a_{i,j})_{m*n}
\left \| A \right \|_{M1}\sum_{i,j}^{}\left | a_{ij} \right |全部元素模和
\left \| A \right \|_{M2}\sqrt{\sum_{i,j}^{}\left | a_{ij} \right |^{2}}全部元素模和平方开根号
\left \| A \right \|_{M\infty }max\left \{ \left | a_{ij} \right | \right \}模长最大

算子范数

定义的矩阵范数 为从属向量范数 的矩阵范数,在计算中经常出现矩阵和向量的乘积,因此希望矩阵范数和向量范数间有某种协调性。

定义如下:

数值最优化的过程中直接运用即可,最常用的经常用到的是矩阵的2范数。

算子 p 范数总结: A=(a_{i,j})_{s*n}
\left \| A \right \|_{1}max(_{1\leqslant j\leqslant n})\left \{ \sum_{i=1}^{s}\left | a_{ij} \right | \right \}列模长和取最大
\left \| A \right \|_{2}\sqrt{\rho (A^{H}A)}谱范数,A^{H}A的最大的特征值
\left \| A \right \|_{\infty }max(_{1\leqslant i\leqslant s})\left \{ \sum_{j=1}^{n}\left | a_{ij} \right | \right \}行模长和取最大

 关于算子2范数 \left \| A \right \|_{2} 其中的 \rho 函数,意为求解特征值的最大值\large \rho (A)=max\left \{ \lambda _{i} \right \},也就是矩阵A谱半径(最大特征值)。

 定理:矩阵A谱半径(最大特征值)  小于  矩阵A任意矩阵范数

关于L1,L2范数拓展

\large L1 正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择

\large L2 正则化可以防止模型过拟合

为什么 \large L1 范数可以产生稀疏矩阵

目标是把 \omega 的解限制在黄色区域内,假设参数只有两个:\omega 1,\omega 2

左图为  \large L2 范数  右图为  \large L1范数

右图中的 \large L1范数公式为:

因为 \left \| x \right \|_{1}\leqslant C ,所以根据\large L1公式:\left \| x \right \|_{1}= \left | \omega 1 \right |+\left | \omega 2 \right |\leqslant C

所以呈现的是一个菱形,如图就把解定在了右图中的 \omega ^{*}处,在此处 \omega 1=0,所以说明\large L1具有稀疏性。

右图中的 \large L2 范数公式为:

因为\left \| x \right \|_{2}\leqslant C, 所以根据L2 公式:\left \| x \right \|_{2}= (\left | \omega 1 \right |^{2}+\left | \omega 2 \right |^{2})^{\frac{1}{2}}\leqslant C

所以呈现的是一个圆形,如图就把解定在了左图中的 \omega ^{*}处,一般不在边界,所以说明 \omega 1,\omega 2 一般都不是 0,所以说不是零,就防止了过拟合。

最小二乘法是数学中一种常用于数据分析和曲线拟合的方法,它通过最小化误差的平方和来寻找最佳拟合曲线。多项式拟合是其中的一种应用,它通过选择一个适当次数的多项式函数来逼近数据点。误差平方和是评价拟合好坏的一个重要指标,它对每个数据点的残差求平方和,能够得到全局误差的度量。 参考资源链接:[最小二乘法与多项式拟合原理及应用](https://wenku.csdn.net/doc/1s2sjfx5ot) 在实际操作中,误差平方和是通过将每个数据点与拟合函数之间的垂直距离的平方求和得到的。这种方法之所以常用,是因为它便于数学推导和计算。而1-范数是所有数据点到拟合函数的垂直距离的总和,它更多地关注个别点的误差,可能受到异常值的影响较大。2-范数是误差平方和的算术平方根,它对较大的误差给予了更多的权重,是一种更敏感的误差度量方式。 使用最小二乘法进行多项式拟合时,我们首先选择一个函数类,例如次数不超过n的多项式,然后构建一个优化问题,使得误差平方和最小。这通常涉及到求解一组线性方程组,来确定多项式的系数。在多项式拟合中,我们会尽量避免过拟合现象,即拟合函数过于贴合数据点而失去泛化能力。通过选择合适次数的多项式或者使用正则化技术,可以有效控制模型的复杂度,提高拟合效果。 为了深入理解最小二乘法和多项式拟合的原理及应用,我推荐阅读《最小二乘法与多项式拟合原理及应用》。这本书详细介绍了最小二乘法的基础知识,包括不同范数在误差度量中的作用,以及多项式拟合的具体实现方法。通过学习这本书,你将能够更好地掌握多项式拟合的技巧,从而在实际数据分析中准确地预测和建模。 参考资源链接:[最小二乘法与多项式拟合原理及应用](https://wenku.csdn.net/doc/1s2sjfx5ot)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值