用途:满足 KKT 条件后极小化 拉格朗日公式 即可得到在不等式约束条件下的可行解
首先给出形式化的不等式约束优化问题:
列出 拉格朗日公式 得到无约束优化问题:
KKT condition:
一.
如果存在 ,使得
(原函数最优 = 对偶最优),则此时
就分别是原问题和对偶问题的最优解,可知:
二.
即如果存在 使:
因为要满足: | |
因为要满足: | |
原问题的可行域 | |
因为要满足: |
如果存在 满足上面四个条件,那么他们就是原问题和对偶问题的可行解。这就是KKT条件。
满足 KKT 条件,那么一定是强对偶。