91. 解码方法
一条包含字母 A-Z 的消息通过以下映射进行了 编码 :
‘A’ -> 1
‘B’ -> 2
…
‘Z’ -> 26
要 解码 已编码的消息,所有数字必须基于上述映射的方法,反向映射回字母(可能有多种方法)。例如,“11106” 可以映射为:
“AAJF” ,将消息分组为 (1 1 10 6)
“KJF” ,将消息分组为 (11 10 6)
注意,消息不能分组为 (1 11 06) ,因为 “06” 不能映射为 “F” ,这是由于 “6” 和 “06” 在映射中并不等价。
给你一个只含数字的 非空 字符串 s ,请计算并返回 解码 方法的 总数 。
题目数据保证答案肯定是一个 32 位 的整数。
示例 1:
输入:s = “12”
输出:2
解释:它可以解码为 “AB”(1 2)或者 “L”(12)。
示例 2:
输入:s = “226”
输出:3
解释:它可以解码为 “BZ” (2 26), “VF” (22 6), 或者 “BBF” (2 2 6) 。
示例 3:
输入:s = “0”
输出:0
解释:没有字符映射到以 0 开头的数字。
含有 0 的有效映射是 ‘J’ -> “10” 和 ‘T’-> “20” 。
由于没有字符,因此没有有效的方法对此进行解码,因为所有数字都需要映射。
示例 4:
输入:s = “06”
输出:0
解释:“06” 不能映射到 “F” ,因为字符串含有前导 0(“6” 和 “06” 在映射中并不等价)。
提示:
1 <= s.length <= 100
s 只包含数字,并且可能包含前导零。
这题标的中等,用的知识是动态规划,能独立做出来我还是很开心的,动态规划一直是我不怎么擅长的一种分析方式,之前做的几道动态规划的题都是看了题解来做出来的。
思路
这题思路并不复杂,主要不好弄的点在各种状态的考虑上。
首先,这是一个分解的问题,是一个顺序无关问题,那我们就固定一个分解方向,一般就是从头到尾,也就是从0开始。
接下来开始考虑状态转移方程,也可以说是寻找子问题的表示方式,首先是状态的定义,也就是dp数组代表什么,本题中我设定的是dp[i]代表前n个元素能够包含的解码方法,当在数组末尾增加一个数字时,有两种情况,第一,这个数字就单在哪里,这样子构成的方法总数时dp[i-1],把i-1情况下所有的方法末尾加一个数就行,第二,和上一个数字组合,这里的方法数的dp[i-2],因为要占用两个数字,需要在i-2的那种情况下加上组合之后的数,这种情况的方法数就是dp[i]=dp[i-1]+dp[i-2],到这里初步的分析结束。
接下来要考虑一些条件限制
1、i=0时 dp[i]=1
2、第一个数字就是0,直接返回0,无法分解。
3、前面dp[i]=dp[i-1]的那种情况,如果第i个数字是0,没法单着,这种情况就不计算。
4、dp[i] = dp[i-1]+dp[i-2]这种情况,需要考虑是不是满足组合的条件,组合之后的数要在1-26之间才行。
5,当第i个数字是0,而第i-1个数字不是1或2,直接返回0
代码
class Solution {
public:
int sum = 0;
int numDecodings(string s) {
if(s[0] == '0') return 0;
int n = s.length();
vector<int> dn(n+1);
dn[0]=1;
dn[1]=1;
for(int i=2;i<=n;i++)
{
if(s[i-1] == '0')
{
if(s[i-2] == '1' || s[i-2] == '2')
dn[i] = dn[i-2];
else{
return 0;
}
}else{
if(s[i-2] == '1' || (s[i-2] == '2' && s[i-1] <= '6'))
dn[i] = dn[i-1] + dn[i-2];
else{
dn[i] = dn[i-1];
}
}
}
return dn[n];
}
};