剑指 Offer 07. 重建二叉树
由先序序列和中序序列重建二叉树,基本的思路便是先序序列可以确定每个父节点,而中序序列可以确定每个父节点对应的左右子树。然后再分别确定左子树的左右子树…右子树的左右子树…递归完成建树!
但是需要注意的是,前序序列的待重建(遍历)部分和中序序列的戴重建(遍历)部分要一一对应好,因此需要记录一下每个序列中待重构子序列的始末位置。
class Solution {
HashMap<Integer, Integer> hash;//存储元素在中序遍历中的位置,方便确定root
public TreeNode buildTree(int[] preorder, int[] inorder) {
hash = new HashMap<>();
for(int i = 0; i < inorder.length; i ++){
hash.put(inorder[i], i);
}
return reBuild(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1);
}
//递归建树
public TreeNode reBuild(int[] preorder, int ps, int pe, int[] inorder, int is, int ie){
if(ps > pe || is > ie) return null;
if(preorder.length == 0) return null;
TreeNode root = new TreeNode(preorder[ps]);
int rootIndex = hash.get(preorder[ps]);//得到此时的root在中序序列中的位置
int leftNum = rootIndex - is; //划分后左子树元素个数
int rightNum = ie - rootIndex; //划分后右子树元素个数
root.left = reBuild(preorder, ps + 1, ps + leftNum, inorder, is, rootIndex - 1);
root.right = reBuild(preorder, ps + leftNum + 1, pe, inorder, rootIndex + 1, ie);
return root;
}
}