cs
文章平均质量分 89
Maria_乔
在研究科研上,想要看看更广阔的世界,更多结实同道中人。
展开
-
压缩感知稀疏基之离散小波变换
题目:压缩感知稀疏基之离散小波变换看小波变换的时间超过半个月了,到今天为止终于可以得到小波变换矩阵(小波基)了,该陆续写一些总结了,这一篇给出最核心的东西:在Matlab中如何得到小波变换矩阵?我看小波变换的最终目的也是为了得到小波变换矩阵,因为小波并不是目的,看小波是为了研究压缩感知的稀疏表示。但小波变换真心不是一般的正交变换,它没有一个简单的公式可以表达,里面涉及的概念太多,一时无法吸收消化转载 2017-12-05 20:01:13 · 3855 阅读 · 3 评论 -
小波变换中的信号扩展(延拓)问题
题目:小波变换中的信号扩展(延拓)问题 本篇主要是做为上一篇《压缩感知稀疏基之离散小波变换》的一个补充说明。 首先给出一个卷积的例子: 从上面的卷积计算过程中可以看出,在计算y(0)和y(4)时,x(n)和h(n)只有一个点对应,在计算其它值时有两个点对应,以上计算还可以用矩阵表示如下: 我们可以对x(n)按某种规律进行转载 2017-12-05 20:05:19 · 1393 阅读 · 0 评论 -
IST改进算法之Two-Step Iterative Shrinkage/Thresholding(TwIST)
题目:IST改进算法之Two-Step Iterative Shrinkage/Thresholding(TwIST) 本篇介绍IST的一种改进算法TwIST,该改进算法由以下文献提出:Bioucas-DiasJ M, Figueiredo M AT.A new TwIST: two-step iterative shrinkage/thresholding algorithms转载 2017-11-27 21:16:51 · 2122 阅读 · 1 评论 -
迭代硬阈值(IHT)
题目:压缩感知重构算法之迭代硬阈值(Iterative Hard Thresholding,IHT) 本篇来介绍IHT重构算法。一般在压缩感知参考文献中,提到IHT时一般引用的都是文献【1】,但IHT实际上是在文献【2】中提出的。IHT并不是一种凸优化算法,它类似于OMP,是一种迭代算法,但它是由一个优化问题推导得到的。文献【1】和文献【2】的作者相同,署名单位为英国爱丁堡大学(Un转载 2017-11-27 21:26:20 · 2048 阅读 · 0 评论 -
浅谈压缩感知(一):背景简介
浅谈压缩感知(一):背景简介 <div class="postBody"> <div id="cnblogs_post_body"><h1>1、动机与背景</h1>数字化革命:随着数字化技术的快速发展,电话、手机、相机、电视等数字化产品如雨后春笋般涌现市场,无时无刻不在影响着我们的生活,这是一个数字化的时代。数码传感器的挑战:在这样一个数字转载 2017-11-27 21:42:32 · 932 阅读 · 1 评论 -
浅谈压缩感知(二):理论基础
浅谈压缩感知(二):理论基础 <div class="postBody"> <div id="cnblogs_post_body"><p>主要内容:</p>信号的稀疏表示编码测量(采样过程)恢复算法(非线性)一、信号与图像的稀疏表示在DSP(数字信号处理)中,有个很重要的概念:变换域(某个线性空间:一组基函数支撑起来的空间)一般而言,我们的转载 2017-11-27 21:46:32 · 1539 阅读 · 0 评论 -
浅谈压缩感知(三):几何解释
浅谈压缩感知(三):几何解释 <div class="postBody"> <div id="cnblogs_post_body"><p>主要内容:</p> 信号的稀疏表示模型压缩测量RIP性质恢复重建 一、信号的稀疏表示模型信号在某个空间是非稀疏的,如果变换到某个空间,即可变成稀疏的。稀疏信号表示有极少的非零系数。如下图,左边转载 2017-11-27 21:50:12 · 527 阅读 · 0 评论 -
浅谈压缩感知(四):恢复算法
浅谈压缩感知(四):恢复算法 <div class="postBody"> <div id="cnblogs_post_body"><p>主要内容:</p>1、L1 minimization2、Matching Pursuit3、Iterative thresholding4、Total-variation minimization 1、L转载 2017-11-27 21:51:55 · 819 阅读 · 0 评论