转载自点击打开链接
首先01背包题目的雏形是
有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
从这个题目中可以看出,01背包的特点就是:每种物品仅有一件,可以选择放或不放。
其状态转移方程是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
对于这方方程其实并不难理解,方程之中,现在需要放置的是第i件物品,这件物品的体积是c[i],价值是w[i],因此f[i-1][v]代表的就是不将这件物品放入背包,而f[i-1][v-c[i]]+w[i]则是代表将第i件放入背包之后的总价值,比较两者的价值,得出最大的价值存入现在的背包之中。
理解了这个方程后,将方程代入实际题目的应用之中,可得
- for(i = 1; i<=n; i++)
- {
- for(j = v; j>=c[i]; j--)//在这里,背包放入物品后,容量不断的减少,直到再也放不进了
- {
- f[i][v]=max(f[i-1][v],f[i-1][v-c[i]]+w[i]);
- }
- }
理解了01背包之后,下面就来看看实际的题目
HDU2546:饭卡
http://acm.hdu.edu.cn/showproblem.php?pid=2546
很经典的一道01背包题,要注意的是这里只要剩余的钱不低于5元,就可以购买任何一件物品,所以5在这道题中是很特许的,再使用01背包之前,我们首先要在现在所拥有的余额中保留5元,用这五元去购买最贵的物品,而剩下的钱就是背包的总容量,可以随意使用,因此可得代码
- #include <stdio.h>
- #include <algorithm>
- using namespace std;
- int cmp(int a,int b)
- {
- return a<b;
- }
- int main()
- {
- int n;
- while(~scanf("%d",&n),n)
- {
- int i,price[2013]= {0},dp[2013] = {0};
- for(i = 1; i<=n; i++)
- scanf("%d",&price[i]);
- sort(price+1,price+1+n,cmp);
- int MAX=price[n];
- int j,m;
- scanf("%d",&m);
- if(m<5)//低于5元不能购买
- {
- printf("%d\n",m);
- continue;
- }
- m-=5;//取出5元用于购买最贵的物品
- for(i = 1; i<n; i++)//01背包
- {
- for(j = m;j>=price[i];j--)
- {
- dp[j] = max(dp[j],dp[j-price[i]]+price[i]);
- }
- }
- printf("%d\n",m+5-dp[m]-MAX);
- }
- return 0;
- }
HDU1171:Big Event in HDU
http://acm.hdu.edu.cn/showproblem.php?pid=1171
这道题咋看有点复杂,其实也只是换了一种思维,因为题目要求要尽量平均分配,所以我们可以先将总价值sum求出,然后得出其分配的平均值为sum/2,要注意这个答案可能为小数,但是又因为sum是整数,所以最后得出的sum/2是要小于等于实际的值。将这个结果进行01,背包,可以得出其中一个宿舍所得的最大价值,而另一个宿舍的最大价值也可以相应的得到,而前者必定小于等于后者。
- #include <stdio.h>
- #include <string.h>
- #include <algorithm>
- using namespace std;
- int val[5005];
- int dp[255555];
- int main()
- {
- int n,i,j,a,b,l,sum;
- while(~scanf("%d",&n),n>0)
- {
- memset(val,0,sizeof(val));
- memset(dp,0,sizeof(dp));
- l = 0;
- sum = 0;
- for(i = 0;i<n;i++)
- {
- scanf("%d%d",&a,&b);
- while(b--)
- {
- val[l++] = a;//将价值存入数组
- sum+=a;
- }
- }
- for(i = 0;i<l;i++)
- {
- for(j = sum/2;j>=val[i];j--)//01背包
- {
- dp[j] = max(dp[j],dp[j-val[i]]+val[i]);
- }
- }
- printf("%d %d\n",sum-dp[sum/2],dp[sum/2]);
- }
- return 0;
- }
HDU2602:Bone Collector
http://acm.hdu.edu.cn/showproblem.php?pid=2602
经典的01背包题,给出了石头的数量与背包的容量,然后分别给出每个石头的容量与价值,要求最优解,经过前面的练手,这道题已经是很简单了,可以说是01背包果题。
- #include <stdio.h>
- #include <string.h>
- #include <algorithm>
- using namespace std;
- struct Node
- {
- int h;
- int v;
- } node[1005];
- int main()
- {
- int t,n,m,l;
- int dp[1005];
- scanf("%d",&t);
- while(t--)
- {
- scanf("%d%d",&n,&m);
- int i;
- for(i = 1; i<=n; i++)
- scanf("%d",&node[i].h);
- for(i = 1; i<=n; i++)
- scanf("%d",&node[i].v);
- memset(dp,0,sizeof(dp));
- for(i = 1; i<=n; i++)
- {
- for(l = m; l>=node[i].v; l--)
- dp[l] = max(dp[l],dp[l-node[i].v]+node[i].h);
- }
- printf("%d\n",dp[m]);
- }
- return 0;
- }
HDU2639:Bone Collector II(01背包第k优解)
http://acm.hdu.edu.cn/showproblem.php?pid=2639
解决了上面那倒题目之后,这道题跟上面的题目有些不同,因为这里要求的是第K优解
- #include <stdio.h>
- #include <string.h>
- #include <algorithm>
- using namespace std;
- struct Node
- {
- int price;
- int val;
- } node[1005];
- int main()
- {
- int t;
- scanf("%d",&t);
- while(t--)
- {
- int n,v,k,i,dp[1005][31] = {0},a[31],b[31];
- scanf("%d%d%d",&n,&v,&k);
- for(i = 0; i<n; i++)
- scanf("%d",&node[i].price);
- for(i = 0; i<n; i++)
- scanf("%d",&node[i].val);
- int j;
- for(i = 0; i<n; i++)
- {
- for(j = v; j>=node[i].val; j--)
- {
- int cnt = 0,d;
- for(d = 1; d<=k; d++)//分别将放入第i个石头与不放第i个石头的结果存入a,b,数组之中
- {
- a[d] = dp[j-node[i].val][d]+node[i].price;
- b[d] = dp[j][d];
- }
- int x,y,z;
- x = y = z = 1;
- a[d] = b[d] = -1;
- while(z<=k && (x<=k || y<=k))//循环找出前K个的最优解
- {
- if(a[x] > b[y])
- {
- dp[j][z] = a[x];
- x++;
- }
- else
- {
- dp[j][z] = b[y];
- y++;
- }
- if(dp[j][z]!=dp[j][z-1])
- z++;
- }
- }
- }
- printf("%d\n",dp[v][k]);
- }
- return 0;
- }
HDU2955:Robberies
http://acm.hdu.edu.cn/showproblem.php?pid=2955
这道题有点特别,咋看之下其状态转移方程似乎有些不同,但事实上远离是相通的,要注意其精度
- #include <stdio.h>
- #include <algorithm>
- using namespace std;
- struct Bank
- {
- int money;
- double p;
- } bank[10005];
- int main()
- {
- int n,t;
- double p;
- scanf("%d",&t);
- while(t--)
- {
- scanf("%lf%d",&p,&n);
- p = 1-p;
- int i,j,sum = 0;
- for(i = 0; i<n; i++)
- {
- scanf("%d%lf",&bank[i].money,&bank[i].p);
- bank[i].p = 1-bank[i].p;
- sum+=bank[i].money;
- }
- double dp[10005]= {1.0};
- for(i = 0; i<n; i++)
- {
- for(j = sum; j>=bank[i].money; j--)
- {
- dp[j] = max(dp[j],dp[j-bank[i].money]*bank[i].p);
- }
- }
- for(i = sum; i>=0; i--)
- {
- if(dp[i]-p>0.000000001)
- {
- printf("%d\n",i);
- break;
- }
- }
- }
- return 0;
- }
HDU3466:Proud Merchants
http://acm.hdu.edu.cn/showproblem.php?pid=3466
这道题由于规定了手上的前低于q时就不能购买该样东西,所以要先将商品按q-p排序,剩下的就是简单的01背包了
- #include <stdio.h>
- #include <string.h>
- #include <algorithm>
- using namespace std;
- struct node
- {
- int p,q,v;
- } a[555];
- int cmp(node x,node y)//按q-p排序,保证差额最小为最优
- {
- return x.q-x.p<y.q-y.p;
- }
- int main()
- {
- int n,m,i,j;
- int dp[5555];
- while(~scanf("%d%d",&n,&m))
- {
- for(i = 0; i<n; i++)
- scanf("%d%d%d",&a[i].p,&a[i].q,&a[i].v);
- memset(dp,0,sizeof(dp));
- sort(a,a+n,cmp);
- for(i = 0; i<n; i++)
- {
- for(j = m; j>=a[i].q; j--)//剩余的钱大于q才能买
- {
- dp[j] = max(dp[j],dp[j-a[i].p]+a[i].v);//这里的j-a[i].p决定了之前的排序方法
- }
- }
- printf("%d\n",dp[m]);
- }
- return 0;
- }
HDU1864:最大报销额
http://acm.hdu.edu.cn/showproblem.php?pid=1864
题目中药注意的有几样,首先每张发票中单件物品价格不能超过600,其次发票总额不能超过1000,而且发票上的物品必须是ABC三类,将满足以上条件的发票存入数组之中,就是裸01背包
- #include <stdio.h>
- #include <algorithm>
- #include <string.h>
- using namespace std;
- int dp[3000050];//由于每张发票不超过1000,最多30张,扩大100倍数后开这么大即可
- int main()
- {
- char ch;
- double x,y;
- int sum,a,b,c,money[35],v;
- int t,i,j,k;
- while(~scanf("%lf%d",&x,&t),t)
- {
- sum = (int)(x*100);//将小数化作整数处理
- memset(money,0,sizeof(money));
- memset(dp,0,sizeof(dp));
- int l = 0;
- for(i = 0; i<t; i++)
- {
- scanf("%d",&k);
- a = b = c = 0;
- int flag = 1;
- while(k--)
- {
- scanf(" %c:%lf",&ch,&y);
- v = (int)(y*100);
- if(ch == 'A' && a+v<=60000)
- a+=v;
- else if(ch == 'B' && b+v<=60000)
- b+=v;
- else if(ch == 'C' && c+v<=60000)
- c+=v;
- else
- flag = 0;
- }
- if(a+b+c<=100000 && a<=60000 && b<=60000 && c<=60000 && flag)//按题意所说,必须满足这些条件
- money[l++] = a+b+c;
- }
- for(i = 0; i<=l; i++)
- {
- for(j = sum; j>=money[i]; j--)
- dp[j] = max(dp[j],dp[j-money[i]]+money[i]);
- }
- printf("%.2lf\n",dp[sum]/100.0);
- }
- return 0;
- }