
人工智能
文章平均质量分 65
源滚滚编程
人生苦短,我用Python,坚持每天学习,坚持每天进步一点点,一对一带徒弟。
展开
-
开源向量大模型推荐:2025年技术选型指南
在人工智能技术的工程化落地过程中,开源向量大模型正成为连接理论研究与产业应用的关键桥梁。这些模型通过将非结构化数据转化为高维语义向量,为知识检索、特征匹配、相似度计算等任务提供了统一的技术范式。本文将从技术特性、应用场景和生态成熟度三个维度,系统解析2025年最具价值的开源向量大模型。原创 2025-05-06 09:21:30 · 990 阅读 · 0 评论 -
向量大模型与向量数据库:人工智能时代的双引擎驱动
在人工智能技术的浪潮中,以大规模预训练模型为基础的向量大模型与向量数据库正成为技术生态的核心支柱。两者如同DNA双螺旋结构般紧密交织,共同推动着语义理解、智能决策等领域的突破性进展。本文将深入解析这两项技术的本质差异与协同机制,揭示其在现代AI架构中的战略价值。原创 2025-05-06 09:19:18 · 481 阅读 · 0 评论 -
仓颉编程语言:面向未来的全场景智能开发新范式
在并发编程领域,仓颉语言颠覆性地采用用户态线程模型,每个线程仅占用几KB内存,实现微秒级调度延迟。这种轻量化设计配合并发对象库,使开发者能以同步编程的思维处理异步任务,彻底解决了传统锁机制带来的复杂度问题。其底层运行时通过分布式标记算法和轻量锁优化,在8核设备上实测并发性能较同类方案提升40%。安全性方面,仓颉语言构建了多层防御体系:编译期通过严格的类型检查消除空指针异常,运行时集成越界检查和溢出保护,工具链配备代码混淆和资产保护模块。原创 2025-05-04 09:23:39 · 278 阅读 · 0 评论 -
LangChain:重构大语言模型应用开发的范式革命
2022年10月22日,Harrison Chase在GitHub上提交了名为LangChain的开源项目的第一个代码版本。这个看似普通的代码提交,却悄然开启了一场重塑大语言模型(LLM)应用开发范式的技术革命。彼时,距离ChatGPT引爆全球人工智能浪潮尚有一月之遥,但LangChain的诞生已经预示了LLM技术从单点突破到系统集成的必然趋势。原创 2025-05-03 08:25:44 · 1207 阅读 · 0 评论 -
ChatGPT:重塑人工智能交互范式的破晓之作
从GPT-3.5到ChatGPT,再到DeepSeek等竞品的涌现,大语言模型正经历从“能力竞赛”到“应用落地”的范式转移。在效率与责任、创新与监管的平衡中,ChatGPT引发的这场AI革命,或许只是人类迈向通用人工智能(AGI)漫长征途的第一步。尽管ChatGPT仍以4亿周活跃用户的绝对优势主导市场,但DeepSeek等对手的崛起表明,AI聊天机器人的竞争已进入“细分场景深耕”阶段。ChatGPT的持续进化,例如2024年推出的高级语音模式和o1推理模型,正是这一趋势的缩影。原创 2025-05-03 08:14:32 · 708 阅读 · 0 评论 -
Transformer:颠覆深度学习的架构革命与技术演进
2017年,谷歌团队在论文《Attention Is All You Need》中提出的Transformer架构,彻底改变了人工智能对序列数据的处理范式。通过这种机制,模型能够自动识别并强化相关位置的语义关联,例如在句子“The cat sat on the mat”中,“cat”与“sat”的关联权重显著高于其他无关词汇。其核心思想是:每个位置的输入向量通过**查询(Query)、键(Key)、值(Value)**三个矩阵变换,动态计算与其他位置的关联权重。,实现了全局上下文感知与并行计算的完美平衡。原创 2025-04-30 09:42:20 · 1977 阅读 · 0 评论 -
循环神经网络(RNN):从基础到前沿的技术解析
RNN通过其独特的循环结构,赋予模型记忆能力,使其能够捕捉序列中的动态特征。尽管面临梯度问题和计算效率的挑战,但通过结构改进(如LSTM、GRU)和新型设计(如RWKV),RNN在特定场景中仍具竞争力。其中,( W_h )、( U_h ) 为权重矩阵,( b_h ) 为偏置项,( f ) 为激活函数(如tanh或ReLU)。例如,处理句子时,每个单词作为输入依次进入网络,隐藏状态逐层传递,最终输出序列的预测结果。与传统的前馈神经网络不同,RNN的隐藏层不仅接收当前输入,还包含前一时刻的隐藏状态。原创 2025-04-30 09:37:12 · 993 阅读 · 0 评论 -
LangChain4j持久化存储深度解析:构建企业级AI应用的记忆中枢
在人工智能应用开发中,会话记忆与知识库的持久化存储是决定系统智能水平的关键因素。作为Java生态中最成熟的LLM集成框架,LangChain4j通过模块化设计和多层级存储方案,为企业级AI应用提供了灵活高效的持久化解决方案。原创 2025-04-29 08:59:24 · 892 阅读 · 0 评论 -
LangChain4j:Java开发者的大语言模型集成新范式
在人工智能技术迅猛发展的今天,大型语言模型(LLM)已成为推动智能化应用落地的核心引擎。然而,对于Java开发者而言,如何高效地将LLM能力融入传统企业级应用,曾是一道技术鸿沟。LangChain4j作为Java生态中首个专注于LLM集成的开源框架,以模块化设计和高度可扩展性,正在重塑Java开发者构建AI应用的方式。原创 2025-04-29 08:57:34 · 856 阅读 · 0 评论 -
为什么使用 Streamlit?数据科学家的交互式应用开发指南
Streamlit正在重塑数据应用的开发范式,其"Python优先"的理念让数据科学家能专注于核心价值创造。无论是快速原型开发还是生产级应用部署,这个框架都展现出惊人的适应性。正如创始人Adrien Treuille所说:“我们想消除工具与洞见之间的技术鸿沟。” 现在,正是您开启Streamlit之旅的最佳时机。原创 2025-04-27 07:56:28 · 531 阅读 · 0 评论 -
CentOS7 部署 Ollama 全栈指南:构建安全远程大模型服务
通过本文的配置方案,开发者可在 CentOS7 上构建稳定的大模型服务端,并通过标准 HTTP 协议实现安全远程调用。建议定期执行保持模型版本最新,同时关注 CVE 漏洞公告及时修补安全风险。对于企业级场景,可结合 Kubernetes 实现高可用集群部署。原创 2025-04-26 08:51:38 · 606 阅读 · 0 评论 -
基于 Requests 与 Ollama 的本地大模型交互全栈实践指南
通过 requests 库与 Ollama 的深度整合,开发者能够以极简的代码实现对大模型的精准控制。这种组合既保留了本地化部署的数据安全性,又具备云服务的灵活扩展性,为金融分析、智能客服、医疗诊断等场景提供了可靠的技术基础。随着 Ollama 生态的持续完善,基于 HTTP 协议的标准交互模式必将成为企业级 AI 应用的核心架构范式。原创 2025-04-26 08:34:34 · 316 阅读 · 0 评论 -
全面解析 MCP(Model Context Protocol):AI 大模型的“万能连接器”
*MCP(Model Context Protocol,模型上下文协议)**是由 Anthropic 公司于 2024 年 11 月推出的开源协议,旨在为 AI 大模型与外部数据源、工具之间建立标准化连接通道。它通过标准化、安全化、场景化的连接能力,让大模型从“封闭的知识库”进化为“动态的业务伙伴”。随着 OpenAI、Google 等巨头的全面接入,MCP 正在重塑企业数字化转型的底层逻辑——未来的竞争,将是。,通过统一的通信协议和数据结构,解决大模型与真实世界交互的“信息孤岛”问题。原创 2025-04-25 18:18:49 · 800 阅读 · 0 评论 -
2025生物科技革命:AI驱动的基因编辑与合成生物学新纪元
2024年生物科技发展呈现三大特征:技术工具精准化(基因编辑误差率进入亚纳米级)、研发流程智能化(AI主导70%以上药物发现环节)、产业应用规模化(合成生物学产品渗透35个工业门类)。麦肯锡研究显示,生物经济对全球GDP贡献率将在2030年突破15%,这场由技术聚合引发的产业革命,正在重新定义人类文明的演进轨迹。原创 2025-03-07 22:09:29 · 1024 阅读 · 0 评论 -
2025年科技趋势深度解析:从“人工智能+”到量子跃迁的技术革命
2025年的科技革命呈现两大特征:纵向的技术深化(量子计算突破物理极限、AI大模型参数量突破百万亿级)与横向的生态融合(机器人+脑机接口、区块链+云计算)。麦肯锡研究显示,采用混合云架构的企业数字化转型成功率提升至78%,而仍依赖传统IT架构的企业市场竞争力下降41%。在这个技术跃迁的关键窗口期,构建“教育-科技-产业”协同创新体系,将成为把握全球科技竞争主动权的决胜要素。原创 2025-03-07 22:05:40 · 855 阅读 · 0 评论 -
大模型推理显存优化:从KV Cache压缩到量化策略实战
随着ChatGPT等大语言模型的广泛应用,模型推理过程中的显存占用问题日益凸显。以典型的Llama2-13B模型为例,单次推理就需要占用超过6GB显存,严重制约了服务吞吐量和硬件利用率。本文将深入探讨大模型推理中的显存优化策略,并结合Hugging Face生态系统展示实战方案。这篇博客结合了当前主流优化技术,包含代码示例、性能数据对比和最新研究成果,符合CSDN用户对实践性的需求。需要调整或补充任何内容请随时告知。欢迎在评论区交流您的优化实践经验!#大模型 #推理优化 #显存管理 #AI工程化。原创 2025-03-06 20:22:34 · 1045 阅读 · 0 评论 -
从零到一:手把手教你打造自己的编程语言(文末免费领取开发工具包)
2025年的今天,随着LLM和开源工具的普及,创造一门属于自己的编程语言不再只是图灵奖得主的专利。本文将带你跨越从“Hello World”到“语言设计者”的鸿沟,当你在GitHub发布第一个版本时,记住:Rust历经10年才走向成熟,Swift背后是苹果的万亿生态。:AQ语言选择解释型路线,通过虚拟机实现跨平台,同时预留编译接口,兼顾开发效率与执行性能(参考某开源项目设计思路)。:某开发者设计的语言因过度追求“自然语言编程”,导致编译器出现二义性,最终项目流产(警惕“远距离鬼魅行为”陷阱)。原创 2025-03-04 08:57:17 · 1079 阅读 · 0 评论 -
AI编码工具对决:Trae与Cursor的开发者生存指南
当老张把Trae生成的前端页面与Cursor构建的微服务架构成功对接时,窗外已晨光微熹。或许真正的开发者自由,在于懂得让AI工具各展所长——Trae的敏捷与Cursor的严谨,正如代码世界的一体两面。(如果这篇深度对比为您节省了试错时间,欢迎通过平台赞赏功能支持作者。每一个「赞同」都是技术创作者深夜调试代码的动力,让我们共同见证AI重塑开发者的工作方式!注:本文基于工具最新正式版实测,功能更新以官方发布为准。原创 2025-03-03 10:46:47 · 993 阅读 · 0 评论 -
Python金融数据分析入门:用Tushare绘制贵州茅台K线图
深夜,财经专业的学生小林盯着屏幕上杂乱的股价数据发愁。课程作业要求分析贵州茅台2023年的股价走势,但手动整理数据耗时费力,图表总是错位。在同学的推荐下,他尝试用Python写了几行代码,结果不仅自动生成了专业K线图,还发现了隐藏在数据中的买卖信号……若分析对你有启发,欢迎通过赞赏支持技术分享(文末附支持方式)。:Tushare版本需≥1.2.89,避免接口兼容性问题。:滑动调节显示天数,验证“横盘震荡后突破”等形态。(注:支持方式请查看各平台的功能入口):政策变动与股价波动的关联一目了然。原创 2025-03-03 10:39:41 · 343 阅读 · 0 评论 -
零基础Python速成指南:用Trae把代码写成对话
这个号称"编程绝缘体终结者"的AI工具,正让零基础小白把代码玩成消消乐……如果这篇文章让你找到了编程的乐趣,不妨请作者喝杯续命咖啡(点击下方【喜欢作者】)。你的每一份支持(哪怕0.88元),都是我们教AI写《孤勇者》代码的动力!这个时代最公平的事,就是AI把编程变成了人人可玩的闯关游戏。下期预告:《用Trae给EX发代码情书:如何科学挽回爱情》,关注【源滚滚编程】解锁赛博恋爱技巧!某教育机构数据显示,用Trae学Python的学员坚持率是传统课程的3倍。👉 666个即用代码块。原创 2025-03-03 09:50:32 · 616 阅读 · 0 评论 -
Trae革命:下一代AI协作IDE如何重塑软件开发范式
凌晨三点,全栈工程师小林盯着屏幕上冲突的Git提交记录,第12次尝试合并团队成员的分支失败。这个本应两小时前完成的协作开发任务,因为代码冲突、环境差异和沟通延迟,导致项目进度严重滞后。如果这篇文章让您看到了软件开发的未来,不妨请作者喝杯量子咖啡(点击下方【喜欢作者】)。某央行数字货币系统采用Trae后,交易吞吐量达到1TB/s,代码通过量子安全认证。软件开发的下一个纪元,从你指尖的第一次神经编译开始。下期预告:《用Trae开发跨维次元应用:量子计算+元宇宙实战》,关注【源滚滚编程】抢占技术奇点!原创 2025-03-03 09:40:07 · 416 阅读 · 0 评论 -
科技风云:从百万富翁到带薪陪娃,本周热点全解读
嘿,技术达人们,又到了每周的科技新闻时间!今天,我们来聊聊那些让人大跌眼镜又忍俊不禁的科技新闻。别眨眼,精彩即将呈现!原创 2025-01-14 10:01:09 · 768 阅读 · 0 评论 -
马斯克的未来幻想曲:机器人、火星和不值钱的钞票
马斯克的未来幻想曲充满了无限的想象和可能性。虽然这些预言听起来有些疯狂,但不得不承认,这位科技狂人总是能让我们对未来充满期待。不过,别忘了,未来虽然美好,但也要脚踏实地。毕竟,就算机器人再厉害,也得有人给它们充电;就算火星再遥远,也得有人先造好飞船。所以,让我们一边期待马斯克的未来预言成真,一边努力做好当下的每一件事。毕竟,未来是由我们每一个人共同创造的。在这个充满希望和挑战的时代,让我们携手共进,向着美好的未来奋勇前行。原创 2025-01-14 09:50:54 · 877 阅读 · 0 评论 -
2024年Python生态系统十大技术革新盘点
在技术的浪潮中,Python 语言始终保持着其独特的魅力和强大的生命力。2024 年,Python 生态系统迎来了诸多令人振奋的技术革新,这些创新不仅提升了 Python 的性能和功能,也为开发者带来了更多的便利和可能性。本文将盘点 2024 年 Python 生态系统的十大技术革新,让我们一起探索这些改变编程世界的进步。原创 2025-01-14 09:34:08 · 959 阅读 · 0 评论 -
spacy快速入门
它基于自然语言处理领域的最新研究,提供了一系列高效且易用的工具,用于文本预处理、文本解析、命名实体识别、词性标注、句法分析和文本分类等任务。SpaCy的设计目标是高性能、易于使用和可扩展性,它内置了多种预训练模型,可用于处理多种语言,包括英语、法语、德语、中文等。综上所述,SpaCy是一个强大的自然语言处理库,它通过提供专门的中文模型,能够有效地处理中文文本,支持多种NLP任务,非常适合需要进行中文文本分析的开发者和研究人员使用。下面是一个SpaCy的入门案例,以及每一行代码的详细解释,特别适合初学者。原创 2024-12-19 13:42:16 · 782 阅读 · 0 评论 -
自然语言处理学什么
最后,可以遍历处理后的文档对象,提取每个单词的文本、词性标签和依存关系标签,以及识别和提取文本中的命名实体。NLTK的优点在于其功能全面,易于使用,且配套了一系列教育材料,包括在线教程、示例代码和完整的书籍,适合新手和专家使用。这些技术是构建NLP应用的基础,它们可以帮助我们处理和分析大量的文本数据,提高信息处理的效率和准确性。同时,熟练使用至少一种编程语言,尤其是Python,是必不可少的,因为Python是目前NLP领域中最流行的编程语言,拥有丰富的库和框架,能够极大地提高开发效率。原创 2024-12-19 13:26:06 · 499 阅读 · 0 评论 -
什么是自然语言处理
此外,了解机器学习的基本概念和算法,以及熟悉NLP的基本任务和技术,如分词、词性标注和语言模型,对于深入理解NLP至关重要。综上所述,大模型是自然语言处理领域的关键技术,它们通过预训练和微调的方法学习语言的深层特征,广泛应用于各种语言任务中,对NLP的发展产生了深远的影响。同时,持续学习最新的研究进展和参与NLP社区的讨论也是必不可少的,这有助于你保持知识的更新和扩展专业网络。NLP的进步不仅推动了AI的发展,也为人类社会带来了深远的影响,使得机器能够更深入地理解和参与人类的沟通和决策过程。原创 2024-12-19 13:09:22 · 784 阅读 · 0 评论 -
用Python操作Kubernetes:从读取YAML到部署应用
但在此之前,我们有一个特别的通告——本周六,我们的Python全栈班即将开班,这是一个专为想要深入学习Python和现代Web开发技术的学习者设计的课程,而且现在报名,您可以享受限时特价,仅需100元!同时,不要错过我们的Python全栈班,这是一个提升技能、拓展职业机会的绝佳机会。本周六,我们的Python全栈班即将开班,这是一个专为想要深入学习Python和现代Web开发技术的学习者设计的课程。是的,您没有看错,只要100元,您就可以加入我们的Python全栈班,与我们一起开启这段精彩的学习之旅。原创 2024-11-27 20:05:01 · 316 阅读 · 0 评论 -
探索人工智能:从Python到深度学习的进阶之旅
在当今这个数据驱动的时代,人工智能(AI)已经成为科技领域的热门话题。对于有志于进入这一领域的学习者来说,制定一个系统的学习计划至关重要。记住,实践是学习的最佳方式,不断尝试和犯错将使您在AI的道路上越走越远。Python以其简洁的语法和强大的功能,成为AI领域的主流编程语言。在AI的世界里,数学是不可或缺的基石。学习CNN在图像识别中的应用,以及RNN和LSTM在序列数据处理中的应用。在掌握了基础知识和实践经验后,您可以根据自己的兴趣深入特定的AI领域。深度学习是AI的前沿领域,涉及复杂的神经网络结构。原创 2024-11-27 19:16:25 · 564 阅读 · 0 评论 -
Python与人工智能:技术革新的双轮驱动
Python拥有丰富的库和框架,如NumPy、Pandas、SciPy、TensorFlow、PyTorch和Scikit-learn等,这些工具为数据处理、科学计算、机器学习、深度学习提供了强大的支持。Python的跨平台特性和可扩展性使其能够在不同的操作系统和环境中运行,这对于需要在多平台上部署人工智能应用的开发者来说是一个巨大的优势。Python拥有一个活跃的开源社区,社区成员不断开发和维护新的库,分享知识,解决技术难题,这为人工智能的研究和应用提供了强大的支持。Python在AI领域的应用。原创 2024-11-26 12:14:34 · 373 阅读 · 0 评论 -
人工智能:技术革命的新浪潮
人工智能的发展经历了多个阶段,从最初的概念提出,到专家系统的兴起,再到深度学习技术的突破,每一步都标志着人工智能技术的飞跃。目前,人工智能技术正处于蓬勃发展期,大数据、云计算、互联网、物联网等信息技术的发展为人工智能提供了强大的数据支持和计算能力。在21世纪的科技浪潮中,人工智能(Artificial Intelligence,简称AI)已经成为一个不可忽视的力量,它正以前所未有的速度和规模改变着我们的生活和工作方式。本文将探讨人工智能的定义、发展历程、应用领域以及它对未来社会的影响。原创 2024-11-26 12:09:02 · 423 阅读 · 0 评论 -
Python中的递归函数常用示例
【代码】Python中的递归函数常用示例。原创 2024-05-17 14:50:59 · 167 阅读 · 0 评论 -
机器学习算法之随机森林
实现方式是调节随机森林的 n_jobs 参数,记得把 n_jobs 参数数值设为和 CPU 内核数一致,比如你的 CPU 内核数是 2,那么 njobs 参数设为3或者更大是没有意义的。如果是用来进行回归分析的话,随机森林会把所有决策树预测的值取平均数:如果是用来进行分类的话,在森林内部会进行“投票”,每棵树预测出数据类别的概率,比如其中一棵树说,“这瓶酒 80% 属于 class 1”,另外一棵树说,“这瓶酒 60%属于 class 2”,随机森林会把这些概率取平均值,然后把样本放入概率最高的分类当中。原创 2024-05-17 10:52:16 · 392 阅读 · 0 评论 -
机器学习之决策树算法
另外,从图像来看,不同的点大致都能落入到自己的区域中,相比深度为1的时候更加的准确一点。从结果来看,分数变成了0.84,已经是一个比较能够接受的分数了。从结果来看,分类器的表现并不是特别好,我们可以加大深度试试。从结果来看,分数从0.84变成了0.93,明显更加的准确了。原创 2024-05-16 16:41:42 · 329 阅读 · 0 评论 -
机器学习高斯贝叶斯算法实战:判断肿瘤是良性还是恶性
我们使用威斯康星乳腺肿瘤数据集,来构建一个机器学习模型,用来判断患者的肿瘤是良性还是恶性。原创 2024-05-16 15:54:59 · 872 阅读 · 0 评论 -
多项式贝叶斯算法
二项式分布可以用抛硬币的案例来理解,多项式分布可以用投骰子来理解。骰子有六个面,所以每次投骰子,都是六种可能中的一种。那么我们投骰子n次,每个面朝上的次数分布情况,就是一个多项式分布。原创 2024-05-16 14:53:36 · 224 阅读 · 0 评论 -
高斯贝叶斯算法
高斯贝叶斯算法,是假设样本的特征符合高斯分布,或者说符合正态分布时所使用的算法。原创 2024-05-16 14:21:32 · 325 阅读 · 0 评论 -
贝努利贝叶斯算法
【代码】贝努利贝叶斯算法。原创 2024-05-16 14:06:54 · 148 阅读 · 0 评论 -
线性回归模型之套索回归
本案例是基于之前的岭回归的案例的。# 将数据拆分20次用来对模型进行评分est,X,y,# 获取模型名称# 绘制模型评分# 加载数据# 绘制图形plt.show()原创 2024-05-16 13:42:01 · 372 阅读 · 0 评论 -
线性模型之岭回归的用法
【代码】线性模型之岭回归的用法。原创 2024-05-15 17:42:55 · 406 阅读 · 0 评论