
数据分析
文章平均质量分 81
源滚滚编程
人生苦短,我用Python,坚持每天学习,坚持每天进步一点点,一对一带徒弟。
展开
-
NumPy 聚合操作方法详解
NumPy 提供了多种聚合操作方法,用于对数组中的数据进行统计和计算。下面将对这些方法逐一进行讲解,并通过示例代码帮助你更好地理解它们的使用。原创 2025-03-27 10:05:26 · 341 阅读 · 0 评论 -
什么是DeepSeek R1:开启高效推理新时代
DeepSeek R1作为深度求索团队开发的第一代推理模型,不仅在推理能力上取得了显著突破,还在成本控制和开源共享方面树立了新的标杆。通过强化学习和智能训练场的创新训练方法,DeepSeek R1在处理复杂的推理任务时表现出色,能够为用户提供高质量的解决方案。同时,其高效的资源利用和开源性质使其在实际应用中更具竞争力。随着技术的不断进步和应用场景的不断拓展,DeepSeek。原创 2025-02-08 14:09:47 · 544 阅读 · 0 评论 -
Python与Excel:高效数据处理的完美搭档
这种集成方式不仅保留了Excel的易用性,还充分发挥了Python的强大功能,让Excel用户无需离开熟悉的界面即可完成复杂的数据处理任务。此外,Python在数据分析方面具有强大的能力。通过Python的自动化和数据分析能力,用户可以轻松应对复杂的数据处理任务,同时保留Excel的易用性和可视化优势。然而,随着数据量的不断增加和业务需求的日益复杂,仅依靠Excel的内置功能往往难以满足高效处理的需求。此时,Python凭借其强大的数据处理能力和丰富的库支持,成为Excel用户的得力助手。原创 2025-02-08 13:25:42 · 279 阅读 · 0 评论 -
Python Requests库全攻略:从入门到精通
在当今的互联网时代,数据获取和交互成为了开发者日常工作中的重要部分。Python作为一门简洁而强大的编程语言,提供了许多工具来简化这一过程。其中,requests库无疑是处理HTTP请求的利器。无论你是初学者还是经验丰富的开发者,掌握requests库的使用都将大大提升你的工作效率。本文将带你从零开始,逐步深入,全面掌握requests库的使用技巧。requests是一个优雅而简单的HTTP库,专门为人类设计。相比于Python内置的urllib库,requests。原创 2025-02-05 10:56:47 · 880 阅读 · 0 评论 -
20个OpenPyXL实用案例:从入门到精通
通过以上 20 个案例,我们全面掌握了openpyxl的基本功能和高级用法。无论是简单的数据读写,还是复杂的样式设置、图表创建,openpyxl都能轻松应对。希望本文能帮助你在实际项目中更好地应用openpyxl!原创 2025-01-28 08:47:18 · 713 阅读 · 0 评论 -
Python操作Excel的全面指南
本文详细介绍了如何使用Python操作Excel文件,涵盖了常用的库及其使用方法。通过openpyxlpandasxlrdxlwt和xlsxwriter,我们可以轻松地读取、写入、处理和分析Excel数据,并生成带有样式、公式和图表的报表。希望本文能帮助你在实际项目中更好地应用Python进行Excel操作。原创 2025-01-28 08:37:38 · 730 阅读 · 0 评论 -
vue3+g2plot之旭日图
概述旭日图(Sunburst Chart)是一种现代饼图,它超越传统的饼图和环图,能表达清晰的层级和归属关系,以父子层次结构来显示数据构成情况。旭日图中,离远点越近表示级别越高,相邻两层中,是内层包含外层的关系。在实际项目中使用旭日图,可以更细分溯源分析数据,真正了解数据的具体构成。而且,旭日图不仅数据直观,而且图表用起来特别炫酷,分分钟拉高数据汇报的颜值!很多数据场景都适合用旭日图,基础旭日图效果预览:核心代码:import { Sunburst } from '@antv/g2plot';原创 2024-07-26 10:54:12 · 765 阅读 · 0 评论 -
vue3+g2plot之直方图
本教程讲解了vue3+g2plot如何绘制直方图,完整代码如下。打赏3元即可获取完整源码。人生苦短,我用Python,我是您身边的Python私教~原创 2024-07-26 08:37:20 · 536 阅读 · 0 评论 -
g2plot如何实现面积图和折线图的动态切换?
一开始的时候显示的是面积图:当我点击折线图的时候,要变成折线图:当我再点击面积图的时候,还要变回面积图:要实现这个功能,得知道g2plot几个重要的API。参考文档如下:https://g2plot.antv.antgroup.com/api/plot-api第一个是render方法:第二个是update方法:第三个是destory方法:另外,我们还需要知道vue的监听器是什么,怎么使用的。这里说一下我的思路:1、页面挂载的时候加载数据,渲染画布,默认使用面积图2、监听图原创 2024-07-17 21:50:29 · 457 阅读 · 0 评论 -
Window11安装达梦数据库
这个时候建议去看看达梦的安装手册,或者接着看我的文章:https://eco.dameng.com/document/dm/zh-cn/pm/install-uninstall.html。由于现在流行国产化,很多公司的数据库产品都使用了国产数据库,所以,今天给大家讲解一下,达梦数据库的安装和试用,这样学完以后,就可以直接在公司里面用了。首先,需要先注册账号,然后在这个网址下载:https://www.dameng.com/list_103.html。原创 2024-03-14 11:39:27 · 1205 阅读 · 0 评论 -
《Python数据分析技术栈》第08章数据分析案例研究 01 方法 Methodology
Python数据分析技术栈》第08章数据分析案例研究 01 方法 Methodology在上一章中,我们介绍了各种基于 Python 的可视化库,以及如何使用这些库中的函数绘制不同的图形。现在,我们将通过案例研究来了解迄今为止所讨论概念的实际应用。原创 2024-01-23 08:55:26 · 796 阅读 · 0 评论 -
《Python数据分析技术栈》第07章Python数据可视化 03 Seaborn 库
Python数据分析技术栈》第07章Python数据可视化 03 Seaborn 库Seaborn 是另一个基于 Python 的数据可视化库。Seaborn 更改了 Matplotlib 的默认属性,以调整调色板并自动对列进行聚合。通过默认设置,可以更轻松地编写创建各种图表所需的代码。Seaborn 也提供自定义这些绘图的功能,但与 Matplotlib 相比,自定义选项较少。Seaborn 可以实现二维以上数据的可视化。原创 2024-01-23 08:47:38 · 957 阅读 · 0 评论 -
《Python数据分析技术栈》第07章Python数据可视化 02 使用 Pandas 绘制曲线 Plotting using Pandas
Python数据分析技术栈》第07章Python数据可视化 02 使用 Pandas 绘制曲线 Plotting using PandasPandas 库在幕后使用 Matplotlib 库进行可视化,但使用 Pandas 函数绘制图形更加直观和友好。Pandas 要求数据为宽格式或聚合格式。Pandas 中使用的 plot 函数(基于 Matplotlib plot 函数)允许我们通过自定义指定绘图类型的 kind 参数值来创建各种绘图。原创 2024-01-23 08:32:29 · 811 阅读 · 0 评论 -
《Python数据分析技术栈》第07章Python数据可视化 01 Matplotlib
Python数据分析技术栈》第07章Python数据可视化 01 Matplotlib在上一章中,我们了解了 Pandas,它是一个具有各种功能的库,用于准备数据,以便为分析和可视化做好准备。可视化是了解数据模式、识别异常值和其他兴趣点,以及向外部受众展示我们的发现的一种手段,而无需手动筛选数据。可视化还能帮助我们从原始数据中收集信息,获得原本难以得出的见解。原创 2024-01-23 08:27:14 · 947 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 16 整洁数据和数据重组技术 Tidy data and techniques for restructuring data
Python数据分析技术栈》第06章使用 Pandas 准备数据 16 整洁数据和数据重组技术 Tidy data and techniques for restructuring data整洁数据是 Hadley Wickham 提出的一个术语。请注意,使数据整洁不同于数据清理。数据清理涉及处理缺失值和冗余信息、删除填充字符以及更改不准确的数据类型。另一方面,将数据转换为整洁的格式涉及重组数据,并沿着正确的坐标轴排列,以方便分析。让我们通过以下 DataFrame 的示例来理解这一点。原创 2024-01-23 08:16:01 · 948 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 15 重组数据并处理异常情况 Restructuring data and dealing with anomalies
Python数据分析技术栈》第06章使用 Pandas 准备数据 15 重组数据并处理异常情况 Restructuring data and dealing with anomalies正如我们前面所讨论的,原始数据通常是杂乱无章的,不适合进行分析。大多数数据集在适合分析和可视化之前都需要进行大量处理。数据集中最常见的问题如下。在接下来的章节中,我们将了解如何处理缺失和重复数据、将宽格式数据转换为长格式数据,以及如何使用透视、堆栈和熔化等各种方法。原创 2024-01-23 07:56:40 · 934 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 14 如何在 Pandas 中组合对象 How to combine objects in Pandas
Python数据分析技术栈》第06章使用 Pandas 准备数据 14 如何在 Pandas 中组合对象 How to combine objects in Pandas在 Pandas 中,有多种函数可用于组合两个或多个对象,具体取决于我们是要横向组合还是纵向组合。在本节中,我们将介绍用于组合对象的四种方法–追加(append)、连接(join)、连接(concat)和合并(merge)。原创 2024-01-23 07:42:46 · 902 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 13 分组和汇总 Grouping and aggregation
Python数据分析技术栈》第06章使用 Pandas 准备数据 13 分组和汇总 Grouping and aggregation聚合是将一组值汇总为一个值的过程。下面我们将介绍 groupby 方法、聚合函数、变换、筛选和应用方法以及 groupby 对象的属性。在此,我们再次使用相同的 COVID-19 数据集,该数据集显示了 2020 年 4 月 12 日所有国家的病例数和死亡数。我们可以看到,有几个国家属于同一个大洲。让我们找出各大洲的病例总数和死亡人数。原创 2024-01-23 07:42:17 · 841 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 12 在 Pandas 中表示日期和时间 Representing dates and times in Pandas
Python数据分析技术栈》第06章使用 Pandas 准备数据 12 在 Pandas 中表示日期和时间 Representing dates and times in Pandas在 Pandas 中,有一个 Timestamp 函数可以用来定义日期、时间或日期和时间的组合。这与 Python 中的实现不同,后者需要单独的对象来定义日期或时间。原创 2024-01-23 07:14:04 · 965 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 11 pandas中的运算符 Operators in Pandas
Pandas 使用以下可应用于整个序列的运算符。Python 需要一个循环来遍历列表或字典中的每个元素,而 Pandas 则利用了 NumPy 中实现的矢量化功能,使这些运算符能够应用于序列中的每个元素,从而消除了遍历和循环的需要。表 6-7 列出了不同类型的运算符。可以使用以下方法复制算术运算符执行的功能:"+“用 add,”-“用 sub,”*“用 mul,”/“用 div,”%“用 mod,”**"用 pow。== ( 相等),(大于),=(大于或等于),!原创 2024-01-23 07:06:47 · 449 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 10 索引器和数据子集的选择 Indexers and selection of subsets of data
Python数据分析技术栈》第06章使用 Pandas 准备数据 10 索引器和数据子集的选择 Indexers and selection of subsets of data在 Pandas 中,有许多选择和访问数据的方法,如下所示。数据检索的首选方法是使用 loc 和 iloc 索引器。索引器和索引操作符都可以使用索引访问对象。请注意,索引器不同于索引操作符,后者是一对包含索引的方括号。虽然我们使用索引操作符 [] 从列表、元组和 NumPy 等对象中选择数据,但并不推荐使用该操作符。原创 2024-01-23 06:54:23 · 982 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 09 Pandas 中的数据类型 Data types in Pandas
Python数据分析技术栈》第06章使用 Pandas 准备数据 09 Pandas 中的数据类型 Data types in Pandas除了用于定性数据的 "类别 "数据类型在 Pandas 中定义外,Pandas 中使用的数据类型均源自 NumPy。常见的数据类型包括。原创 2024-01-23 06:35:37 · 932 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 08 索引Indexing
如前所述,创建 Pandas 对象时,会创建 RangeIndex 类型的默认索引。这种类型的索引的第一个标签值为 0(对应于 Pandas 系列或数据帧的第一个项目),第二个标签值为 1,按照一个整数间隔的算术级数递增。我们可以使用索引参数或属性设置自定义索引。在我们之前创建的 Series 和 DataFrame 对象中,我们只是为单个项目设置值,在没有索引对象标签的情况下,使用的是默认索引(RangeIndex 类型)。我们可以在定义系列或数据帧时使用索引参数,为索引标签赋予自定义值。原创 2024-01-23 06:27:50 · 1047 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 07 修改 DataFrame 对象 Modifying DataFrame objects
Python数据分析技术栈》第06章使用 Pandas 准备数据 07 修改 DataFrame 对象 Modifying DataFrame objects在本节中,我们将学习如何更改列名以及添加和删除列和行。原创 2024-01-22 08:31:32 · 865 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 06 访问DataFrame中的属性(Accessing attributes in a DataFrame)
Python数据分析技术栈》第06章使用 Pandas 准备数据 06 访问DataFrame中的属性(Accessing attributes in a DataFrame)本节将介绍如何访问 DataFrame 对象中的属性。原创 2024-01-22 07:10:57 · 451 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 05 通过从其他格式导入数据创建DataFrame(Creating DataFrames by importing data fr
Python数据分析技术栈》第06章使用 Pandas 准备数据 05 通过从其他格式导入数据创建DataFrame(Creating DataFrames by importing data from other formats)Pandas 可以使用其阅读器函数从多种格式中读取数据(请参阅此处的完整支持格式列表:https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html)。以下是一些常用格式。原创 2024-01-22 07:07:07 · 935 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 04 DataFrames
Series 对象包含两个部分–一组数值和连接到这些数值的索引标签,而 DataFrame 对象包含三个部分–列对象、索引对象和包含数值的 NumPy 数组对象。总之,我们可以使用字典、元组集和组合系列对象来创建 DataFrame。通过组合系列对象:这里,我们定义了两个系列,然后使用 pd.DataFrame 函数创建一个名为 "combined_ages "的新 DataFrame。我们将在另一个步骤中为列命名。使用元组集:我们使用元组集重新创建了 “combined_ages” DataFrame。原创 2024-01-22 07:00:56 · 1033 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 03 检查Series的属性(Examining the properties of a Series)
Python数据分析技术栈》第06章使用 Pandas 准备数据 03 检查Series的属性(Examining the properties of a Series)在本节中,我们将了解用于查找系列对象更多信息的方法,如元素个数、元素值和唯一元素。原创 2024-01-22 06:53:35 · 865 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 02 pandas的组件(Building blocks of Pandas)
Python数据分析技术栈》第06章使用 Pandas 准备数据 02 pandas的组件(Building blocks of Pandas)系列(Series)和数据帧(DataFrame)对象是 Pandas 的底层数据结构。简而言之,Series 就像一列(只有一个维度),而 DataFrame(有两个维度)就像一个有行和列的表格或电子表格。存储在系列或 DataFrame 中的每个值都附有标签或索引,这可以加快数据检索和访问速度。原创 2024-01-22 06:45:17 · 1229 阅读 · 0 评论 -
《Python数据分析技术栈》第06章使用 Pandas 准备数据 01 Pandas概览(Pandas at a glance)
Wes McKinney 于 2008 年开发了 Pandas 库。Pandas 这个名字来源于计量经济学中用于分析时间序列数据的术语 “面板数据”。Pandas 有许多功能,这些功能使其成为数据处理和分析的常用工具。Pandas 提供数据标签或索引功能,可加快数据检索速度。原创 2024-01-22 06:38:19 · 1266 阅读 · 0 评论 -
《Python数据分析技术栈》第05章 06 矩阵(Matrices)
大多数可用于数组的函数也可用于矩阵。矩阵使用一些算术运算符,使矩阵运算更加直观。例如,我们可以使用 * 运算符获取两个矩阵的点积,这与 np.dot 函数的功能相同。由于矩阵只是数组的一种特殊情况,而且在未来的 NumPy 版本中可能会被弃用,因此通常最好使用 NumPy 数组。《Python数据分析技术栈》第05章 06 矩阵(Matrices)矩阵是一种二维数据结构,而数组可以包含任意维数。原创 2024-01-22 06:29:14 · 766 阅读 · 0 评论 -
《Python数据分析技术栈》第05章 05 获取描述性统计数据/总体衡量标准(Obtaining descriptive statistics/aggregate measures)
Python数据分析技术栈》第05章 05 获取描述性统计数据/总体衡量标准(Obtaining descriptive statistics/aggregate measures)在结束本章之前,让我们了解一下矩阵–NumPy 软件包支持的另一种数据结构。NumPy 中有一些方法可以简化复杂的计算和确定综合度量。原创 2024-01-22 06:26:38 · 523 阅读 · 0 评论 -
《Python数据分析技术栈》第05章 04 切片或选择数据子集(Slicing or selecting a subset of data)
Python数据分析技术栈》第05章 04 切片或选择数据子集(Slicing or selecting a subset of data)数组的切分类似于 Python 中字符串和列表的切分。切片是数据结构(在本例中是数组)的一个子集,可以代表一组值或单个值。在学习了数组的创建和使用之后,我们将进入 NumPy 的另一个重要应用–使用各种函数计算统计量。当我们对数组进行切分时,原始数组不会被修改(会创建一个数组副本)。下面给出了一些切片实例。原创 2024-01-22 06:22:32 · 767 阅读 · 0 评论 -
《Python数据分析技术栈》第05章 03 获取数组属性(Obtaining the properties of an array)
请注意 dtype 与数组类型之间的区别。type 函数给出了容器对象的类型(在本例中,类型是ndarray),而作为属性的 dtype 则给出了数组中各个项的类型。数组的属性,如大小、尺寸、元素数量和内存使用量,都可以通过属性来查找。可以使用 nbytes 属性计算数组占用的内存(字节总数)。该数组中元素的数据类型可通过 dtype 属性计算得出。size 属性给出了数组中元素的个数。ndim 属性给出了维数。原创 2024-01-21 16:29:01 · 360 阅读 · 0 评论 -
《Python数据分析技术栈》第05章 02 广播、矢量化和算术运算(Broadcasting, vectorization, and arithmetic operations)
Python数据分析技术栈》第05章 02 广播、矢量化和算术运算(Broadcasting, vectorization, and arithmetic operations)原创 2024-01-21 16:23:31 · 893 阅读 · 0 评论 -
《Python数据分析技术栈》第05章 01 熟悉数组和 NumPy 函数(Getting familiar with arrays and NumPy functions)
Python数据分析技术栈》第05章 01 熟悉数组和 NumPy 函数(Getting familiar with arrays and NumPy functions)在此,我们将介绍创建和组合数组的各种方法,以及常用的 NumPy 函数。原创 2024-01-20 23:55:39 · 896 阅读 · 0 评论 -
《Python数据分析技术栈》第03章 03 可视化各级数据(Visualizing various levels of data)
需要注意的是,其中一些变量有数值,但这些数值的数量是有限的。对名义变量常用的一种操作是计数。有了这种格式的数据后,将每个特征或列归类到数据的四个层次,然后进行相应的分析。顺序变量: “Pclass”(或乘客等级)是一个顺序变量,因为它的值是有顺序的。请注意,在本章中,我们只想了解如何对数据集中的变量进行分类,并确定适用于每个类别的操作和绘图。在前面的绘图中,我们了解了用于绘制单个分类变量或连续变量的图形。我们还可以计算每个类别中的数值个数、计算模式,并使用条形图和饼图等图表,就像我们对名义变量所做的那样。原创 2024-01-20 23:32:20 · 1297 阅读 · 0 评论 -
《Python数据分析技术栈》第03章 02 数据结构(Structure of data)
Python数据分析技术栈》第03章 02 数据结构(Structure of data)我们需要分析的数据可能具有以下任何一种结构、结构化数据: 以行和列的形式排列。例如:电子表格、CSV/Excel 文件、关系数据库: 电子表格、CSV/Excel 文件、关系数据库非结构化数据: 缺乏结构或形式。例如:照片、视频、网页、文件半结构化数据: 不像关系数据库中的数据那样结构化,但有一些属性,如便于分析的标签: 例如 JSON、XML。原创 2024-01-20 19:53:58 · 957 阅读 · 0 评论 -
《Python数据分析技术栈》第03章 01 描述性数据分析 - 步骤(Descriptive data analysis - Steps)
Jupyter 笔记本有双重用途,既可以执行我们的代码,又可以作为一个平台,提供我们分析的高级摘要。通过添加注释、标题、注解和图片,您可以美化自己的笔记本,使其能够呈现给更多人。您可以下载 PDF 等多种格式的笔记本,然后与他人共享,以供审阅。原创 2024-01-19 07:56:04 · 494 阅读 · 0 评论 -
《Python数据分析技术栈》第03章 02 使用Sympy解决数学问题(Using Sympy for math problems)
Python数据分析技术栈》第03章 02 使用Sympy解决数学问题(Using Sympy for math problems)SymPy 是 Python 中的一个库,可用于解决各种数学问题。我们首先来看看 SymPy 函数如何用于代数–解方程和因式分解表达式。之后,我们将介绍集合论和微积分中的一些应用。可以使用以下语句导入 SymPy 模块。现在,让我们用这个模块来解决各种数学问题,首先是表达式的因式分解。原创 2024-01-19 07:47:27 · 696 阅读 · 0 评论