import java.util.Scanner;
public class FibonacciReturnN {
//给定整数N,返回斐波那契数列的第N项,时间复杂度O(logN)
//顺序计算可以得到O(N)复杂度的方法
//该计算方法最后变成矩阵的N次幂求法,,本题是n-2次幂
public static void main(String[] args) {
Scanner in=new Scanner(System.in);
int n=in.nextInt();
System.out.println(ValueN(n));
}
public static int ValueN(int n){
if(n<1){
return 0;
}
if(n==1 || n==2){
return 1;
}
int [][] base={
{1,1},{1,0}};
int [][] res=matrixPower(base,n-2);//斐波那契数列(F(n),F(n-1))为(1,1)与{
{1,1},{1,0}}的n-2次幂的乘积
return res[0][0]+res[1][0];
}
public static int[][] matrixPower(int[][] m,int p){//求矩阵的p次幂的方法,与求整数的次幂道理一样
if(p==0)
return null;
if(p==1)
return m;
int[][] res=matrixPower(m,p>>1);
res=muliMatrix(res,res);
if((p&1)==1){
res=muliMatrix(res,m);
}
return res;
}
public stat
斐波那契数列的第n项的值(java),时间复杂度O(logn)
最新推荐文章于 2022-07-25 16:44:44 发布
这篇博客介绍了如何利用矩阵快速幂算法在O(logn)的时间复杂度内求解斐波那契数列的第n项。通过递推公式将问题转化为矩阵乘法,然后讨论了整数n次幂的高效计算方法,包括指数的奇偶性处理。

最低0.47元/天 解锁文章
8万+

被折叠的 条评论
为什么被折叠?



