过路费

【问题描述】

有一天你来到了一个奇怪的国家,它有N个城市,城市之间有若干条双向道路连接,每条道路都有一定的费用,经过城市也要一定的费用。从一个城市到达另一个城市的总花费为路径上费用最大的城市费用(包括起点和终点)加上路径上所有的道路的费用。给出Q次询问,分别回答每次询问中两城市间的最少花费。保证城市之间可以互达。

【输入格式】

第一行两个整数N,M,表示有N个城市M条道路。
接下来N行每行一个整数,表示城市的费用ci。
接下来M行每行三个整数,x,y,z,表示城市x和城市y间有一条费用为z的道路。
接下来一行一个整数Q,表示询问次数。
接下来Q行每行两个整数x,y(x不等于y),表示询问从城市x到城市y的最小花费。

【输出格式】

共Q行每行一个整数,第i行的整数表示第i次询问的答案。

【样例输入】

3 3
1
3
2
1 2 1
2 3 1
1 3 3
2
1 3
1 3

【样例输出】

5
5

【数据规模】

对于30%的数据,N<=10,M<=20,Q<=5。
对于60%的数据,N<=200,M<=4000,Q<=100。
对于100%的数据,N<=300,M<=40000,Q<=100000,1<=ci<=100000,1<=z<=1000

思路

题目中有两个限制条件,要使得两城市的 所有路径和+最大点权总和 最小.
显然,同时维护两个条件是很难的,
那么不妨先限制其中一个条件,在一个条件固定的情况下使另一个条件尽可能小.
所以我们可以先枚举每个最大权值的点,在此基础上求最短路,之后看搜出来的答案能否更新

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=305;
const int maxm=40005;
int read()
{
    char ch=getchar();
    int sum=0,f=1;
    while(ch<'0'||ch>'9') 
    {
        if(ch=='-') f
        =-1; 
        ch=getchar();
    }
    while(ch>='0'&&ch<='9') 
    sum=sum*10+ch-'0',ch=getchar();
    return sum*f;
} //读入优化 
int h[maxn],next[maxm<<1],to[maxm<<1],val[maxm<<1],cnt; //双向图记得开两倍 
void add(int u,int v,int w)
{
    next[++cnt]=h[u];
    h[u]=cnt;
    to[cnt]=v;
    val[cnt]=w;
}
int cost[maxn],ans[maxn][maxn],n,m;
int dis[maxn],vis[maxn];
void SPFA(int s)
{
    memset(vis,0,sizeof vis);
    memset(dis,0x3f,sizeof dis);
    //每次清空vis和初始化dis 
    queue<int>q; //重新定义q 
    q.push(s);dis[s]=0;vis[s]=1;
    while(!q.empty()) 
    {
        int u=q.front(); q.pop();
        vis[u]=0;
        for(int i=h[u];i;i=next[i]) 
        {
            int v=to[i],w=val[i];
            if(cost[v]>cost[s]) continue;
            if(dis[v]>dis[u]+w) 
            {
                dis[v]=dis[u]+w;
                if(!vis[v]) q.push(v),vis[v]=1;
            }
        }
    }

    for(int i=1;i<=n;i++)
     for(int j=1;j<=n;j++)
      ans[i][j]=min(ans[i][j],dis[i]+dis[j]+cost[s]);
    //看当前点是否可以更新某两点的答案 
}
int main()
{
    int u,v,w;
    n=read(),m=read();
    for(int i=1;i<=n;i++)cost[i]=read();
    for(int i=1;i<=m;i++) 
    {
        u=read();v=read();w=read();
        add(u,v,w),add(v,u,w); //双向图 
    }

    for(int i=1;i<=n;i++)
     for(int j=1;j<=n;j++) 
      if(i!=j) ans[i][j]=INF; //初始化找最小 

    for(int i=1;i<=n;i++) SPFA(i); //枚举点 

    int q=read();
    for(int i=1;i<=q;i++)
    {
        u=read(),v=read();
        printf("%d\n",ans[u][v]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值