【问题描述】
有一天你来到了一个奇怪的国家,它有N个城市,城市之间有若干条双向道路连接,每条道路都有一定的费用,经过城市也要一定的费用。从一个城市到达另一个城市的总花费为路径上费用最大的城市费用(包括起点和终点)加上路径上所有的道路的费用。给出Q次询问,分别回答每次询问中两城市间的最少花费。保证城市之间可以互达。
【输入格式】
第一行两个整数N,M,表示有N个城市M条道路。
接下来N行每行一个整数,表示城市的费用ci。
接下来M行每行三个整数,x,y,z,表示城市x和城市y间有一条费用为z的道路。
接下来一行一个整数Q,表示询问次数。
接下来Q行每行两个整数x,y(x不等于y),表示询问从城市x到城市y的最小花费。
【输出格式】
共Q行每行一个整数,第i行的整数表示第i次询问的答案。
【样例输入】
3 3
1
3
2
1 2 1
2 3 1
1 3 3
2
1 3
1 3
【样例输出】
5
5
【数据规模】
对于30%的数据,N<=10,M<=20,Q<=5。
对于60%的数据,N<=200,M<=4000,Q<=100。
对于100%的数据,N<=300,M<=40000,Q<=100000,1<=ci<=100000,1<=z<=1000
思路
题目中有两个限制条件,要使得两城市的 所有路径和+最大点权总和 最小.
显然,同时维护两个条件是很难的,
那么不妨先限制其中一个条件,在一个条件固定的情况下使另一个条件尽可能小.
所以我们可以先枚举每个最大权值的点,在此基础上求最短路,之后看搜出来的答案能否更新
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int INF=0x3f3f3f3f;
const int maxn=305;
const int maxm=40005;
int read()
{
char ch=getchar();
int sum=0,f=1;
while(ch<'0'||ch>'9')
{
if(ch=='-') f
=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
sum=sum*10+ch-'0',ch=getchar();
return sum*f;
} //读入优化
int h[maxn],next[maxm<<1],to[maxm<<1],val[maxm<<1],cnt; //双向图记得开两倍
void add(int u,int v,int w)
{
next[++cnt]=h[u];
h[u]=cnt;
to[cnt]=v;
val[cnt]=w;
}
int cost[maxn],ans[maxn][maxn],n,m;
int dis[maxn],vis[maxn];
void SPFA(int s)
{
memset(vis,0,sizeof vis);
memset(dis,0x3f,sizeof dis);
//每次清空vis和初始化dis
queue<int>q; //重新定义q
q.push(s);dis[s]=0;vis[s]=1;
while(!q.empty())
{
int u=q.front(); q.pop();
vis[u]=0;
for(int i=h[u];i;i=next[i])
{
int v=to[i],w=val[i];
if(cost[v]>cost[s]) continue;
if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(!vis[v]) q.push(v),vis[v]=1;
}
}
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ans[i][j]=min(ans[i][j],dis[i]+dis[j]+cost[s]);
//看当前点是否可以更新某两点的答案
}
int main()
{
int u,v,w;
n=read(),m=read();
for(int i=1;i<=n;i++)cost[i]=read();
for(int i=1;i<=m;i++)
{
u=read();v=read();w=read();
add(u,v,w),add(v,u,w); //双向图
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j) ans[i][j]=INF; //初始化找最小
for(int i=1;i<=n;i++) SPFA(i); //枚举点
int q=read();
for(int i=1;i<=q;i++)
{
u=read(),v=read();
printf("%d\n",ans[u][v]);
}
return 0;
}