题目描述
农夫约翰爱好在周末进行高能物理实验的结果却适得其反,导致N个虫洞在农场上(2<=N<=12,n是偶数),每个在农场二维地图的一个不同点。
根据他的计算,约翰知道他的虫洞将形成 N/2 连接配对。例如,如果A和B的虫洞连接成一对,进入虫洞A的任何对象体将从虫洞B出去,朝着同一个方向,而且进入虫洞B的任何对象将同样从虫洞A出去,朝着相同的方向前进。这可能发生相当令人不快的后果。
例如,假设有两个成对的虫洞A(1,1) 和 B(3,1),贝茜从(2,1)开始朝着 +x 方向(右)的位置移动。贝茜将进入虫洞 B(在(3,1)),从A出去(在(1,1)),然后再次进入B,困在一个无限循环中!
| . . . .
| A > B . 贝茜会穿过B,A,
+ . . . . 然后再次穿过B
农夫约翰知道他的农场里每个虫洞的确切位置。他知道贝茜总是向 +x 方向走进来,虽然他不记得贝茜的当前位置。请帮助农夫约翰计算不同的虫洞配对(情况),使贝茜可能被困在一个无限循环中,如果她从不幸的位置开始。
输入输出格式
输入格式:
第1行:N(N<=12),虫洞的数目
第2到N+1行:每一行都包含两个空格分隔的整数,描述一个以(x,y)为坐标的单一的虫洞。每个坐标是在范围 0-1000000000。
输出格式:
第1行:会使贝茜从某个起始点出发沿+x方向移动卡在循环中的不同的配对
输入输出样例
输入样例#1: 复制
4
0 0
1 0
1 1
0 1
输出样例#1: 复制
2
说明
如果我们将虫洞编号为1到4,然后通过匹配 1 与 2 和 3 与 4,贝茜会被卡住,如果她从(0,0)到(1,0)之间的任意位置开始或(0,1)和(1,1)之间。
| . . . .
4 3 . . . 贝茜会穿过B,A,
1-2-.-.-. 然后再次穿过B
相似的,在相同的起始点,如果配对是 1-3 和 2-4,贝茜也会陷入循环。(如果贝西从3进去,1出来,她会走向2,然后被传送到4,最后又回到3)
仅有1-4和2-3的配对允许贝茜从任何二维平面上的点向+x方向走不出现循环。
题面翻译摘自 NOCOW
题解
其实就是要找到有多少种传送门两两配对的情况可以使那个倒霉蛋陷入死循环
那么第一个想法就是暴力枚举所有的配对情况,因为n<=12,所以其实只有12*11+10*9+8*7+6*5+4*3+2*1(应该是这么多种情况吧),显然是可以暴力的一个范围
然后把每次配对好之后就直接去找是否存在环就可以了
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int n,x[15],y[15];
int next_one[15],partner[15];
bool pd()
{
for(int start=1;start<=n;++start)
{
int pos=start;
for(int tot=0;tot<n;++tot)
pos=next_one[partner[pos]];
if(pos!=0) return true;
}
return false;
}
int dfs()
{
int ans=0,i;
for(i=1;i<=n;++i)
if(partner[i]==0) break;
if(i>n)
{
if(pd()) return 1;
else return 0;
}
for(int j=i+1;j<=n;++j)
if(partner[j]==0)
{
partner[j]=i;
partner[i]=j;
ans+=dfs();
partner[i]=partner[j]=0;
}
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d%d",&x[i],&y[i]);
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
if(x[j]>x[i]&&y[i]==y[j])
if(next_one[i]==0||x[j]-x[i]<x[next_one[i]]-x[i])
next_one[i]=j;
printf("%d\n",dfs());
return 0;
}