经过在暑假一个月的学习,大二第一学期开学进行了学习结果测试
(2017.9.26 周二下午三点到七点的测试,中午睡过了,影响了半个小时的时间,没有抢到先机有点尴尬。。。)
一共有六道题,没有具体难度区分;来的时候比较紧急大概浏览了一边,发现第一题的括号配对和第四题的会场安排都在暑假的时候做过了;有一道英文题(因为英语水平不高,心中暗道还好还好)心情也由来晚稍稍放松了一点,先拿到第一题就开始做了。
先来说说题目吧:
第一题:
从题目来看是对于数据结构的简单应用,栈的push(放入),top(顶部元素),pop(丢掉);遵循先进后出的原则进行处理数据;
所以就可以把问题简单化,左括号直接放入栈中,右括号则进行if判断,如果满足于栈的top(顶)结合,然后就pop(把栈顶的元素丢掉);
有了基本思路就开始着手打代码;
#include<iostream>
#include<stack>
#include<cstdio>
#include<cstring>
using namespace std;
int main()
{
char k[110];
int m,i,n;
scanf("%d", &m);
while (m--)
{
scanf("%s", k); n = strlen(k); int h = 0;
stack <char>s; s.push('#');
if (n == 0 || n % 2 != 0)
h = 1;
else
{
for (i = 0; i < n; i++)
{
if (k[i] == '(' || k[i] == '[' || k[i] == '{' || k[i] == '<')
{
s.push(k[i]);
}
else if (k[i] == ')')
{
if (s.top() == '(')
s.pop();
else
break;
}
else if (k[i] == ']')
{
if (s.top() == '[')
s.pop();
else
break;
}
else if (k[i] == '}')
{
if (s.top() == '{')
s.pop();
else
break;
}
else if (k[i] == '>')
{
if (s.top() == '<')
s.pop();
else
break;
}
}
}
if(h!=0)
printf("No\n");
else if (s.top() == '#')
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
是不是看着太麻烦了,这是当时自己做的,后来发现其实else if 就是不需要的,增加了代码的长度并减少了可阅读性;
而且这样分段写,需要多注意的是在考虑了左括号直接压入栈后是可以正常计算,但是一开始的是右括号呢,一直都是右括号的情况,我就疏忽了这个(好像当时还没睡醒,有点迷迷糊糊的)直道提交了四次才意识到,真的失误了,有了教训其他的都是一边过的。
还是学长的答案看着比较舒服。。。 来分享一下:
#include <cstring>
#include <cstdio>
#include <stack>
char s[10005];
int main()
{
int n;
scanf("%d", &n);
while (n--) {
int len, i;
std::stack <char> c;
scanf("%s", s);
len = strlen(s);
for (int i = 0; i < len; i++) {
if (c.empty())
c.push(s[i]);
else {
if((s[i]==')'&&c.top()=='(')||(s[i]==']'&&c.top()=='[')
|| (s[i]=='>'&&c.top()=='<') || (s[i]=='}'&&c.top()=='{'))
c.pop();
else
c.push(s[i]);
}
}
if (!c.empty())
printf("No\n");
else
printf("Yes\n");
}
}
思路是一样的,但是在处理右括号的方面有了很大的改进,把逐句判断写成了同步判断然后||语句链接,把所有情况都考虑了进去。还是比较厉害的,对于新手的我来说很值得借鉴学习。
第二题:
做这道题的关键就是看清题,看清题!!! 清楚了怎么分给下个人的那么这题是很简单的。 是每个人同时去除一半然后同时给右边的那位,把最后一位单一考虑就可以了。
当时好像浪费了一个小时在看错题上了,已知数据不过才仔细看题意识到,不是拿了给右边的,然后右边的再拿出现有的一半给右边的朋友; 唉,这两道满满的累,拖了好长时间才搞定,本来很简单的两道题,细心才是最重要的。
#include<stdio.h>
#include<string.h>
int k[10001],t[10001],n,sum;
int fun()
{
int i,max=k[0];
for(i=0;i<n;i++)
{
if(k[i]!=max)
return 0;
}
return 1;
}
int main()
{
int i,max;
while(~scanf("%d",&n))
{
if(n==0)
break;
sum=0;
for(i=0;i<n;i++)
{
scanf("%d",&k[i]);
}
if(fun())
printf("%d %d\n",sum,k[0]);
else
{
while(1)
{
for(int i=0;i<n;i++)
{
t[i]=k[i]/2;
k[i]=k[i]/2;
}
for(int i=1;i<n;i++)
{
k[i]=k[i]+t[i-1];
if(k[i]%2!=0)
k[i]=k[i]+1;
}
k[0]=t[n-1]+k[0];
if(k[0]%2!=0)
k[0]=k[0]+1;
sum++;
if(fun())
break;
}
printf("%d %d\n",sum,k[0]);
sum=0; memset(k,0,n+1);
}
}
return 0;
}
代码写得复杂了,因为一直是在原先想错方向之后改正的,直接加了一个数组来存放每位朋友拿出来的一半,每次循环都作出更新。
还好测试数据不大就直接过了;
看看学长写的做下比较:
#include <cstdio>
#include <cstring>
int children[105];
int main()
{
int n;
while (scanf("%d", &n) && n) {
memset(children, 0, sizeof(children));
for (int i = 0; i < n; i++) {
scanf("%d", &children[i]);
}
int cnt = 0;
while (true) {
bool flag = false;
int dot;
for (int i = 0; i < n - 1; i++) {
if (children[i] != children[i + 1]) {
flag = true;
break;
}
}
if (!flag) {
break;
}
cnt++;
int sweet = children[0] / 2;
for (int i = 0; i < n; i++) { //这里可以优化一下 想想怎么优化。
children[i] /= 2;
if (i != n - 1) {
children[i] += children[i + 1] / 2;
}
else {
children[i] += sweet;
}
}
for (int i = 0; i < n; i++) {
if (children[i] % 2) children[i]++;
}
}
printf("%d %d\n", cnt, children[0]);
}
return 0;
}
因为循环往往是很耗时的,所以可以优化问题,尽可能减少循环嵌套或者直接不用循环;
第三题:
英语描述了一大段看着挺吓人的,其实看了一眼输入,输出和这个温馨的提示。就瞬间明白了要求是找10000以内所有满足提示所展示的数字 等于另一个数字的各位数字和本身的和; 若是这样正向找的话,估计又要好多循环开始挨个查找。 所以看到这里不如反向的想想,各位数字和本身相加得到的一位数字记下来就是满足selfs number的;
而这道题就可以用一个10000的数组下标来记录已经找到的,然后用循环输出没有标记的就是答案了;
#include<stdio.h>
int k[10005]={0};
int main()
{
int i,j,m,n;
for(i=0;i<10000;i++)
{
j=i+i%10+i/10%10+i/10/10%10+i/10/10/10%10;
k[j]=1;
}
for(i=0;i<10000;i++)
{
if(k[i]==0)
printf("%d\n",i);
}
}
做这道题想到了nyoj上的 无主之地 方法比较类似
虽然自己的这个已经有点自信了,看到学长的更加简洁;
#include<cstdio>
#include<cstring>
using namespace std;
int num[20010];
int main()
{ int i,j,k;
for(i=1;i<=10000;i++)
{ num[i/1000+i/100%10+i/10%10+i%10+i]=1;
if(!num[i])
printf("%d\n",i);
}
}
第四题:
这道题考察的就是贪心算法了,很常见的一道;在暑假的时候也做过类似的;简化为区间覆盖问题,利用结构体,把左右端点整体都存下来,然后按左端点排序,若左端点相同则按右端点升序排列;实现还是比较简单的:
#include<iostream>
#include<algorithm>
#include<stdio.h>
using namespace std;
struct node{
int x,y;
};
bool fr(node a,node b)
{
return a.x==b.x?a.y<b.y:a.x<b.x;
}
int main()
{
int m,n,i,sum,p;struct node k[10010];
scanf("%d",&m);
while(m--)
{
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d%d",&k[i].x,&k[i].y);
}
sort(k,k+n,fr);p=k[0].y;sum=1;
for(i=1;i<n;i++)
{
if(k[i].x>p)
{
sum++;p=k[i].y;
}
else if(k[i].y<p)
{
p=k[i].y;
}
}
printf("%d\n",sum);
}
}
想想当时刚开始接触贪心的时候可是熬夜通宵打一道题,还是熟能生巧比较实在;
看看学长的代码,这次在排序代码的简洁上略微有点优势哦(笑笑。。哈哈哈)
#include <cstdio>
#include <algorithm>
using namespace std;
struct Time{
int a;
int b;
};
struct Time s[10010];
int compare(struct Time a, struct Time b){
if(a.b != b.b){
return a.b < b.b;
}
return a.a < b.a;
}
int main(){
int n, t, i, j, k, ans, end;
scanf("%d", &t);
for(i=1; i<=t; i++){
scanf("%d", &n);
for(j=0; j<=n-1; j++){
scanf("%d%d", &s[j].a, &s[j].b);
}
ans=0;
end=-1;
sort(s, s+n, compare);
for(j=0; j<=n-1; j++){
if(s[j].a>end){
ans++;
end=s[j].b;
}
}
printf("%d\n", ans);
}
return 0;
}
第五题:
这道题用到了贪心+二分法;贪心找最大方案,寻找工具是二分查找(由于数据较大而且精度较高,二分不会超时,而且贪心和二分是很好的组合~)
先明白题目的意思:把已知大小的蛋糕分给若干人,要取得最大化,把最大的一块蛋糕先找出来,当作二分的右边界,左边界初始为0,把中值当作此时要分的蛋糕最大值,看是否符合人数需要,若是满足,则把左值右移到中值,扩大中值,以此类推找到最合适的中值,也就是最大的蛋糕分配;(附:PI = 3.1415926535897932)
#include<stdio.h>
#include<algorithm>
#define PI 3.1415926535897932
using namespace std;
int n,f; double v[10005];
bool fun(double mid)
{
int m=0;double a;
for(int i=n-1;i>=0;i--)
{
a=v[i];
while(a>=mid)
{
a=a-mid;
m++;
}
}
if(m>=f)
return true;
else
return false;
}
int main()
{
int i,m;double a;
scanf("%d",&m);
while(m--)
{
scanf("%d%d",&n,&f);f++;
for(i=0;i<n;i++)
{
scanf("%lf",&a);
v[i]=a*a*PI;
}
sort(v,v+n);
double l=0,r=v[n-1],mid;
while(r-l>=0.00000001)
{
mid=(l+r)/2;
if(fun(mid))
l=mid;
else
r=mid;
}
printf("%.4lf\n",mid);
}
return 0;
}
这个是考试完写的了,前面用的时间太久了; 看看学长的代码:
#include<iostream>
#include <cstdio>
using namespace std;
const double PI = 3.1415926535897932;
const int MAXN = 1005;
const double ESP=1e-6;
double v[MAXN];
int main(void)
{
int test;
cin>>test;
while(test--)
{
int n,f;
cin>>n>>f;
f++;
double maxsize = 0.0;
for(int i=1;i <= n;i++)
{
cin >> v[i];
v[i] *= v[i];
if( maxsize < v[i])
maxsize = v[i];
}
double low = 0.0;
double high = maxsize;
double mid;
while(high - low > ESP)
{
mid = (low + high) / 2;
int count_f = 0;
for(int i = 1; i <= n; i++)
count_f += (int)(v[i] / mid); //当前半径下,每一块蛋糕可以分成几份
if(count_f < f)
high = mid; //因为求的是高精度的小数 所以high最好是等于mid,我试过high=mid+ESP,提交错误,应该是ESP的精度太小的原因。
else
low = mid;
}
printf("%.4lf\n", mid * PI);
}
return 0;
}
没有调用函数,而是直接写到了循环体里面;看着更加方便了一些;
第六题:
这道题用到了深搜,可是我还不会,也没写出来,就先附上学长的代码,等会了再来补充吧。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=10;
char board[maxn][maxn];
int isPut[maxn]; //判断某一列是否可以放棋子
int n,k;
int cnt,num; //cnt方案数 num 棋子数
void DFS(int i){
if(k==num){
cnt++;
return ;
}
if(i>=n)
return ;
for(int j=0;j<n;j++)
if(!isPut[j] && board[i][j]=='#'){
isPut[j]=1;
num++;
DFS(i+1);
isPut[j]=0; //回溯,DFS很重要的一步
num--;
}
DFS(i+1);
}
int main(){
int i,j;
while(scanf("%d%d",&n,&k) && (n != -1 && k != -1)){
//getchar();
for(i=0;i<n;i++){
for(j=0;j<n;j++)
//scanf("%c",&board[i][j]);
//getchar();
cin >> board[i][j];
}
memset(isPut,0,sizeof(isPut));
cnt=0;
num=0;
DFS(0);
printf("%d\n",cnt);
}
return 0;
}
2017.9.27 (第一次写的个人博客)