题目链接
描述
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
输出
输出不同的选择物品的方式的数目。
样例输入
3
20
20
20
样例输出
3
第一种:递归算法
#include<iostream>
#include<cstdio>
using namespace std;
int ans = 0;
int dfs(int arr[],int n,int v,int idx){
if(v == 0)//顺序不能乱,如果把两个if调换,就不对,具体可以画图,就理解了
return 1;
if(n == 0)
return 0;
else
return dfs(arr,n - 1,v,idx + 1) + dfs(arr,n - 1,v - arr[idx],idx + 1);//选或不选
return 0;
}
int main(){
int n,arr[25];
scanf("%d",&n);
for(int i = 0;i < n;i++)
scanf("%d",&arr[i]);
printf("%d\n",dfs(arr,n,40,0));
return 0;
}
第二种算法:[动态规划]
#include<iostream>
#include<cstdio>
using namespace std;
int main(){
int n,arr[25],dp[25][50];//dp[i][j]表示前i件物品恰好凑出j体积的种数
scanf("%d",&n);
for(int i = 0;i < n;i++)
scanf("%d",&arr[i]);
//初始化第一行
for(int i = 0;i <= 40;i++)
dp[0][i] = 0;
//初始化第一列
for(int i = 0;i <= n;i++)//如果凑出体积恰好为0的话,方案数为1!!
dp[i][0] = 1;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= 40;j++){
if(j < arr[i - 1])
dp[i][j] = dp[i - 1][j];
else
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - arr[i - 1]];
}
printf("%d\n",dp[n][40]);
return 0;
}
第二种算法:[动态规划(滚动数组)]
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
int main(){
int n,arr[25],dp[50];//dp[i]表示恰好凑出体积为i的方案数
scanf("%d",&n);
for(int i = 1;i <= n;i++)
scanf("%d",&arr[i]);
memset(dp,0,sizeof(dp));//必须,画图就理解了
dp[0] = 1;//恰好凑出体积为0的时候,方案数为1
for(int i = 1;i <= n;i++)
for(int j = 40;j >= 1;j--)//从后往前,从前往后会覆盖原来的值
if(j >= arr[i])
dp[j] += dp[j - arr[i]];
printf("%d\n",dp[40]);
return 0;
}