描述
有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
输出
输出不同的选择物品的方式的数目。
样例输入
3
20
20
20
样例输出
3
接收数据
n = int(input())
a = [0]
for _ in range(n):
a.append(int(input()))
num = 0
正向思维
def dfs(i, sum):
if sum == 40:
global num
num += 1
return
if i == n:
return
dfs(i + 1, sum)
dfs(i + 1, sum + a[i])
dfs(0, 0)
print(num)
逆向思维
def dfs(i, w):
if w == 0: # 正好装满
return 1
if w < 0 or i == 0: # 物体体积超出剩余空间 or 最终不能装满
return 0
return dfs(i - 1, w) + dfs(i - 1, w - a[i])
print(dfs(n, 40))
动规解法
动规解法就是将上述递归转成递推,这样能大大加快速度。
n = int(input())
a = [0]
for _ in range(n):
a.append(int(input()))
num = 0
# dp[i][j]表示从前i个物品中选择凑出体积j的方法数
dp = [[0 for i in range(41)] for j in range(n + 1)]
for i in range(n + 1):
dp[i][0] = 1
for i in range(1, 41):
dp[0][i] = 0
for i in range(1, n + 1):
for j in range(1, 41):
if a[i] <= j:
dp[i][j] = dp[i - 1][j] + dp[i - 1][j - a[i]]
else:
dp[i][j] = dp[i - 1][j]
print(dp[n][40])
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
---------------------------------------------------------------------------------
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
list重复利用
dp = [0 for i in range(41)]
dp[0] = 1
for i in range(0, n):
for j in range(40, 0, -1):
if a[i] <= j:
dp[j] = dp[j] + dp[j - a[i]]
print(dp[40])
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
---------------------------------------------------------------------------------
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3