牛客网多校第七场 E Counting 4-Cliques

本文详细解析了牛客网多校编程比赛第七场中的一道题目——E Counting 4-Cliques。通过分析问题本质,介绍了如何有效地计算图中的4元子图(四 cliques),探讨了算法思路和实现细节,旨在帮助读者理解和解决此类图论问题。
摘要由CSDN通过智能技术生成
/*
题意:输入k(<=1e6),构造一个图使得图中大小为4的团恰好有k个。

首先考虑构造完全图,那么t个点的完全图一共能有C(t, 4)个大小为4的团。但是在C(t, 4)和C(t+1, 4)之间会有空缺,因此在完全图外放若干个点,每个点与这个完全图中的若干个点连边,最后会形成类似于C(t, 4)+C(x1, 3)+C(x2, 3)+…这样的式子,并且要能补满中间的空隙。

至于为什么是另外找五个点,没办法证明出来,但四个点的话 额外的17个大小为4的团就出不来
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
using namespace std;
typedef long long ll;

ll C4(ll n) { // C(n, 4)
    ll ans = n * (n - 1) * (n - 2) * (n - 3) / (1 * 2 * 3 * 4);
    return ans;
}

ll C3(ll n) { // C(n, 3)
    ll ans = n * (n - 1) * (n - 2) / (1 * 2 * 3);
    return ans;
}

ll mp[200000 + 5];
int k;

int main() {
    memset(mp, -1, sizeof(mp));
    for (ll i = 1; i <= 100; i++) {
        mp[C3(i)] = i;
    }
    scanf("%d", &k);
    ll C = 70;
    ll t = 4;
    while ((t + 1) <= C && C4(t + 1) <= k) {
        t++;
    }
    C = min(C, t);
    ll a, b, c, d, e = -1;
    for (a = 2; a <= C; a++) {
        for (b = a; b <= C; b++) {
            for (c = b; c <= C; c++) {
                for (d = c; d <= C; d++) {
                    ll cnt = C3(a) + C3(b) + C3(c) + C3(d);
                    if (cnt <= k - C4(t)
                            && mp[k - C4(t) - cnt] >= 0
                            && mp[k - C4(t) - cnt] <= C) {
                        e = mp[k - C4(t) - cnt];
                        break;
                    }
                }
                if (e != -1)    break;
            }
            if (e != -1)    break;
        }
        if (e != -1)    break;
    }
    printf("%lld %lld\n", t + 5, t * (t - 1) / 2 + a + b + c + d + e);
    for (int i = 1; i <= t; i++) {
        for (int j = i + 1; j <= t; j++) {
            printf("%d %d\n", i, j);
        }
    }
    for (int j = 1; j <= a; j++)    printf("%lld %d\n", t + 1, j);
    for (int j = 1; j <= b; j++)    printf("%lld %d\n", t + 2, j);
    for (int j = 1; j <= c; j++)    printf("%lld %d\n", t + 3, j);
    for (int j = 1; j <= d; j++)    printf("%lld %d\n", t + 4, j);
    for (int j = 1; j <= e; j++)    printf("%lld %d\n", t + 5, j);
}

 

boosting-crowd-counting-via-multifaceted-attention是一种通过多方面注意力提升人群计数的方法。该方法利用了多个方面的特征来准确估计人群数量。 在传统的人群计数方法中,往往只关注人群的整体特征,而忽略了不同区域的细节。然而,不同区域之间的人群密度可能存在差异,因此细致地分析这些区域是非常重要的。 该方法首先利用卷积神经网络(CNN)提取图像的特征。然后,通过引入多个注意力机制,分别关注图像的局部细节、稀疏区域和密集区域。 首先,该方法引入了局部注意力机制,通过对图像的局部区域进行加权来捕捉人群的局部特征。这使得网络能够更好地适应不同区域的密度变化。 其次,该方法采用了稀疏区域注意力机制,它能够识别图像中的稀疏区域并将更多的注意力放在这些区域上。这是因为稀疏区域往往是需要重点关注的区域,因为它们可能包含有人群密度的极端变化。 最后,该方法还引入了密集区域注意力机制,通过提取图像中人群密集的区域,并将更多的注意力放在这些区域上来准确估计人群数量。 综上所述,boosting-crowd-counting-via-multifaceted-attention是一种通过引入多个注意力机制来提高人群计数的方法。它能够从不同方面细致地分析图像,并利用局部、稀疏和密集区域的特征来准确估计人群数量。这个方法通过考虑人群分布的细节,提供了更精确的人群计数结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值