06-图3 六度空间(30 分)
“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图1所示。
图1 六度空间示意图
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
using namespace std;
int N,M;
const int maxSize = 10005;
int visited[maxSize] = {0};
vector<int>v[maxSize];
int sds(int t)
{
queue<int>q;
q.push(t);
visited[t] = 1;
int curNum = 0,leftNum = 1,cnt = 1,level = 0;
while(!q.empty()){
t = q.front();
q.pop();
leftNum--;
for(int i=0;i<v[t].size();i++){
if(!visited[v[t][i]]){
q.push(v[t][i]);
curNum++;
}
}
if(leftNum==0){
leftNum = curNum;
cnt += leftNum;
curNum = 0;
level++;
}
if(level==6) break;
}
return cnt;
}
int main()
{
int from,to;
cin>>N>>M;
for(int i=0;i<M;i++){
cin>>from>>to;
v[from].push_back(to);
v[to].push_back(from);
}
for(int i=0;i<N;i++){
int cnt = sds(i);
memset(visited,0,sizeof(visited));
printf("%d: %.2f%\n",i,cnt/N*100);
}
return 0;
}