## 使用keras用gpu报错Num GPUs Available:0

本文介绍了一种常见的情况:在使用TensorFlow时无法检测到GPU,并给出了详细的解决方案。通过安装特定版本的TensorFlow和CUDA工具包,可以成功使TensorFlow识别并利用GPU进行加速计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import tensorflow as tf
print("Num GPUs Available: ", len(tf.config.list_physical_devices(‘GPU’)))

出现了
Num GPUs Available:0
并且cuda使用率为0
可以在cmd键入nvidia-smi看gpu运行效率

解决方法
确定安装了tensorflow-gpu版本cuda,cudnn(既有tensorflow,又有tensorflow-gpu不会有影响,因为我卸载tensorflow后在安装tensorflow-gpu在pip list后又会出现tensorflow)
需要安装tf-nightly-gpu
在pip install --user -i https://pypi.douban.com/simple/ tf-nightly-gpu
就可以Num GPUs Available:1

从你的描述来看,你正在运行一个基于 TensorFlowPython 脚本,并且看到了一些日志信息以及关于 TensorFlow 版本和 GPU 可用性的提示。 ### 解释: 1. **脚本路径** - 你在 Windows 系统上运行了一个名为 `test.py` 的 Python 文件,该文件位于 `D:\PythonLearn\PythonCode\design-bench\test.py`。 - 使用的是 Conda 创建的一个虚拟环境 `design-bench` 中的 Python 解释器 (`C:\Users\22418\.conda\envs\design-bench\python.exe`)。 2. **TensorFlow 日志信息** - 日志显示了 TensorFlow 正在启用 oneDNN 自定义操作 (custom operations),这是一种优化工具,可以加速某些计算任务。但由于浮点数运算顺序的不同,可能会导致结果有轻微差异。 - 如果你不希望看到这种影响,可以通过设置环境变量 `TF_ENABLE_ONEDNN_OPTS=0` 来禁用 oneDNN 操作。 3. **TensorFlow 版本及 GPU 支持检查** - 当前使用TensorFlow 版本是 2.19.0。 - 显示没有可用的 GPUNum GPUs Available: 0),这意味着程序只能使用 CPU 进行计算。 --- ### 建议: 如果你需要更高的性能并且拥有支持 CUDA 和 cuDNN 的 NVIDIA GPU,你可以尝试安装适合的驱动、CUDA 工具包以及对应的 TensorFlow-GPU 版本来利用 GPU 加速计算。如果没有 GPU 或者不需要高性能计算,则当前配置已经足够用于普通用途。 #### 示例代码片段(检查 GPU 是否正常工作) ```python import tensorflow as tf print("TensorFlow version:", tf.__version__) gpus = tf.config.list_physical_devices('GPU') if gpus: print(f"Detected {len(gpus)} GPU(s):") for gpu in gpus: print("\t", gpu) else: print("No GPUs detected.") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值