TensorFlow2.4.1无法查询检索GPU设备device,返回可用GPU设备列表为空[]

新安装的TensorFlow2.4.1

环境配置CUDA11.1及对应的cudnn版本
安装TensorFlow2.4.1后

import tensorflow as tf
tf.config.experimental.list_physical_devices(device_type='GPU')
##返回为[],无可用gpu设备

从Anaconda prompt进入

python ##这一步要先输入

import tensorflow as tf
tf.config
### TensorFlow 2.4.1 安装指南 对于希望在Linux服务器上配置深度学习环境并安装TensorFlow GPU2.4.1的用户来说,推荐采用Anaconda创建独立Python环境来管理依赖关系。具体而言,在准备阶段需确认已正确设置CUDA 11.2以及cuDNN 8.0版本[^1]。 #### 创建新的Conda环境 建议通过Anaconda新建一个专门用于此项目的虚拟环境,这有助于隔离不同项目间的库冲突问题。可以按照如下命令执行: ```bash conda create -n tf2 python=3.8 conda activate tf2 ``` 接着,利用pip工具完成TensorFlow及其相关组件的具体安装工作: ```bash pip install tensorflow==2.4.1 keras==2.4.3 ``` 上述过程能够确保所选框架版本与指定GPU驱动相匹配,从而减少潜在兼容性风险[^3]。 ### 使用教程概览 当成功部署好TensorFlow之后,开发者可以通过官方提供的API文档深入了解如何构建模型、训练数据集等内容。值得注意的是,随着新功能不断加入到各个次级发行版中,部分接口可能会有所变化;因此查阅对应版本的手册十分必要。 - **Keras集成**:自TensorFlow 2.x系列起,默认包含了高级抽象层——Keras API的支持,使得编写神经网络变得更加直观便捷。 - **Eager Execution模式**:默认开启即时求值机制,允许更灵活地调试程序逻辑而不必经历图编译的过程。 ### 更新内容要点 相较于之前发布的稳定版本(如TensorFlow 2.3),本次升级主要集中在性能优化方面,并修复了一些已知漏洞。特别是针对NVIDIA Ampere架构显卡提供了更好的支持,进一步提升了计算效率。此外还增加了对更多第三方插件的支持程度,拓宽了应用场景范围[^2]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值