动态规划―最长上升子序列

总时间限制: 2000ms 内存限制: 65536kB
描述
一个数的序列bi,当b1 < b2 < ... < bS的时候,我们称这个序列是上升的。对于给定的一个序列(a1, a2, ..., aN),我们可以得到一些上升的子序列(ai1, ai2, ..., aiK),这里1 <= i1 < i2 < ... < iK <= N。比如,对于序列(1, 7, 3, 5, 9, 4, 8),有它的一些上升子序列,如(1, 7), (3, 4, 8)等等。这些子序列中最长的长度是4,比如子序列(1, 3, 5, 8).

你的任务,就是对于给定的序列,求出最长上升子序列的长度。
输入
输入的第一行是序列的长度N (1 <= N <= 1000)。第二行给出序列中的N个整数,这些整数的取值范围都在0到10000。
输出
最长上升子序列的长度。
样例输入
7
1 7 3 5 9 4 8
样例输出
4

1、题意:如题。
2、思路:动态规划解决。
3、代码:
#include<iostream>
using namespace std;
int main()
{
int i,j,l,t,a[1001],b[1001];
while(cin>>t)
{
for(i=0;i<t;i++)
	cin>>a[i];
b[0]=1;
for(i=1;i<t;i++)
	{
	b[i]=1;
	for(j=0;j<i;j++)
		{
		if(a[i]>a[j]&&b[j]+1>b[i])
			b[i]=b[j]+1;
		}
	}
for(i=0,l=0;i<t;i++)
	if(l<b[i])
		l=b[i];
cout<<l<<endl;
}
return 0;
}
4、总结:最经典的动态规划题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值