第八周周末总结

  这几天还是看的数位dp的例题,hdu还是没有维护完啊,还是再vj上提交的。

  

 

#include<iostream>
using namespace std;
int bit[10];
int dp[10][82][82][82];
void set()
{
int i,j,k,l,x;
for(i=1;i<=81;i++)
    dp[0][0][i][0]=1;
for(l =0;l<9;l++)
        for(i=0;i<=l*9;i++)
            for(j=1;j<=81;j++)
                for(k=0;k<j;k++)
                    for(x=0;x<=9;x++)
                        dp[l+1][i+x][j][(k*10+x)%j] += dp[l][i][j][k];
}
int solve(int n)
{
if(!n)
    return 0;
int ans,i,j,k,len;
int sum,tem1,tem2,s,bit[10],r;
len=sum=ans=0;
tem1=tem2=n;
s=1;
while(tem1)
    {
    bit[++len]=tem1%10;
    tem1/=10;
    sum+=bit[len];
    }
if(n%sum==0)
    ans++;
for(i=1;i<=len;i++)
    {
    sum-=bit[i];
    tem2/=10;
    s*=10;
    tem1=tem2*s;
    for(j=0;j<bit[i];j++)
        {
        for(k=sum+j;k<=sum+j+9*(i-1);k++)
            {
            if(!k)
                continue;
            r=tem1%k;
            if(r)
                r=k-r;
            ans+=dp[i-1][k-sum-j][k][r];
            }
        tem1+=s/10;
        }
    }
return ans;
}
int main()
{
int t,l,r,tt=0;
set();
cin>>t;
while(t--)
    {
    tt++;
    cin>>l>>r;
    cout<<"Case "<<tt<<": ";
    cout<<solve(r)-solve(l-1)<<endl;
    }
return 0;
}
这道题就是算出1到上限R满足的个数,1到L-1的个数,相减得到结果,dp[l][i][j][k]表示前l位和为j摸为j的结果为k的数的个数,当时看资料的时候这个地方还有点绕口,看了一会才知道什么意思,可知关系为dp[l+1][I+x][j][(k*10+x)%j]+=dp[l][i][j][k]。


#include<iostream>
#include<string.h>
using namespace std;
int dp[10][13][2][2];
int digit[10];
int dfs(int len,int remain,bool mask,bool state,bool fp)
{
if(!len)
    return remain==0&&mask?1:0;
if(!fp&&dp[len][remain][mask][state]!=-1)
    return dp[len][remain][mask][state];
int ret = 0 , fpmax = fp ? digit[len] : 9;
for(int i=0;i<=fpmax;i++)
    ret+=dfs(len-1,(remain*10+i)%13,mask||state&&i==3,i==1,fp&&i==fpmax);
if(!fp)
    dp[len][remain][mask][state]=ret;
return ret;
}
int f(int n)
{
int len=0;
while(n)
    {
    digit[++len]=n%10;
    n/=10;
    }
return dfs(len,0,0,0,true);
}
int main()
{
int n;
memset(dp,-1,sizeof(dp));
while(cin>>n)
    cout<<f(n)<<endl;
return 0;
}

这道题就是例题中的第一题和第二题的混合版,综合了两道题。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值