pytorch框架

本文介绍了PyTorch中创建Tensor的方法,包括从list转换为Tensor,以及不同类型的Tensor操作。详细展示了如何利用PyTorch构建经典的LeNet网络,并深入探讨了训练过程中的梯度变化,包括损失函数、优化器的使用。文章以一个初学者的角度总结PyTorch学习,后续还将涉及更多AI相关知识。
摘要由CSDN通过智能技术生成

常用的创建Tensor函数

导入必要的torch包
import torch as t
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F

  1. 生成一个tensor
a = t.Tensor(2,3)
a
out:tensor([[2.7489e+26, 1.7885e+22, 1.7743e+28],
        [2.0535e-19, 1.6635e+22, 7.7781e+31]])
  1. 将python的list转为pytorch的tensor
b = t.Tensor([[1,2,3],[4,5,6]])
out:tensor([[1., 2., 3.],
        [4., 5., 6.]])

因为这里的t.Tensor是等价于t.FloatTensor,是浮点类型,所以会将原来的整数list转为浮点数.
如果换成t.tensor就不会出现这种情况,如下:

b = t.tensor([[1,2,3],[4,5,6]])
out:tensor([[1, 2, 3],
        [4, 5, 6]])

具体二者的区别,一个是调用的python类–>FloatTensor中的构造函数__init__(),另外一个是调用python函数。
3. 将tensor转成list

b.tolist()
out:[[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]
  1. 查看tensor的大小size(),shape
b_size = b.size()
b_size:torch.Size([2, 3])
  1. 生成对角矩阵.eye()
t.eye(2,3)
out:tensor([[1., 0., 0.],
        [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值