Unsupervised Feature Learning by Autoencoder and Prototypical Contrastive Learning for Hyperspectral

对这篇论文进行进行一个小小的总结。找出其中值得借鉴的东西。

摘要:
无监督特征提取+自编码机构建高光谱图像分类网络。
提出了两个自编码机网络,用对比学习整合了两个自编码机。

1.Introduction

指出有足够的标签,监督学习很好,但是第一标签不够,第二如果标签很多,很造成网络的记忆瓶颈。
无监督学习:表示学习(AE,GAN)和判别学习(Contrastive Learning)。
监督对比学习:siamese CNN。
非监督对比学习:MoCo,BYOL,SimSiam

无监督对比学在高光谱应用较少,有诸多困难。

  • 增强方法不通用。
  • 大batch size 对电脑要求高。

提出ContrastNet,优点:

  • 融合了表示学习(AE)和对比学习(PCL),走通了这一流程。
  • 提出变分自编码机和对抗自编码机用于高光谱图像分类的模型。

2.Related work

Variational Autoencoder

  • Adversarial Autoencoder
  • 对比学习

3.Proposed method

分别利用CAE 和 AAE 构造的对比学习的分支,然后用PCL整合这两个分支。
仅仅使用两种图像增强方法:

  • the encoder in an AAE and VAE auto-encoder structure can be seen as a transformation

4.Experiments and analysis

The shape of patches is 27 × 27 × 15 in PU and SA dataset, and 27 × 27 × 30 in the IP dataset.

  • 使用了降维算法

整个流程

  • 先单独训练 AAE 和 VAE,然后得到中间的 Encoder 1024-d变量。
  • 1024-d 的变量输入PCL,得到对比学习的特征。
  • 利用SVM 分类对比学习的特征。
  • 注意事项:这里的1024维特征时从encoder 导数第二个层得到的。

training dataset and test dataset

  • 10% samples of each class are randomly selected for training SVM in the IP and PU datasets, and 5% samples of each class are used for training in the SA dataset。
  • 这说明前面的训练过程都用到了所有的数据集。

5.Conclusion

对这篇论文的评价:
没有正式发表?不知道为什么。
方法上没有创新,但是流程上是一个成功实线。采用所有数据进行特征转化,两种自编码机提取特征作为数据增强方法,然后用对比进一步提取特征,最后用SVM分类。

来源:Unsupervised Feature Learning by Autoencoder and Prototypical Contrastive Learning for Hyperspectral Classification

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值