Deep Few-Shot Learning for Hyperspectral Image Classification-浅读

Deep Few-Shot Learning for Hyperspectral Image Classification

我看的第一篇 few-shot learning 文章,记录一下,看看能不能说明few-shot 是什么东西,难道只是样本少,没有自己独特的学习方法吗?

Introduction

背景介绍的逻辑链条:
The categories of HSI classification methods: supervised classification, unsupervised classification, and semi-supervised classification.

Supervised classification -> The curse of dimensionality ->
Feature extraction -> The problem of lacking labeled samples -> Semi-supervised algorithms

Deep learning -> The lack of labeled samples -> A pixel-pair method -> A semi-supervised CNN -> few shot learning

few shot learning

  • Matching network
  • Meta-learning approach
  • Prototypical networks

The proposed method
a deep few-shot learning - DFSL:

  1. S-CNN to learn a metric space + Euclidean Distance = an embedding function(用了1个样本)
  2. To extract features of all samples in the testing data set by means of a pretrained D-Res-3-D CNN(用5个样本)
  3. SVM -> To classify the testing samples

注意:用额外的高光谱数据集训练出一个网络,20-way 1-shot (下面会有提及这是什么),然后利用5个训练样本配合19个测试样本,在各自的样本上训练,最后用SVM分类。

补充:few-shot learning 的一种学习模式
N-way K -shot 问题: 在训练阶段,会在训练集中随机抽取 N 个类别,每个类别 K 个样本(总共 N*K 个数据),再从这 N 个类中剩余的数据中抽取一批(batch)样本作为模型的预测对象。即要求模型从 N*K 个数据中学会如何区分这 N 个类别,这样的任务被称为 N-way K-shot 问题。
比如:10个类别,抽取5个类别出来,每个类别抽取一个,再从这个5个类中剩余的样本中抽取m个样本作为预测,就构成了5 way 1 shot 问题。这好像只是一种学习方法,训练所有的类别,预测所有的类别,只要能训练的好,也不是不行。一般通过不断学习这些子任务,就能够学到一个好的模型。详细地,请参考上面的链接。

Method

方法部分无需多言,只是这里的loss function 直接利用分布函数得出来,感觉很难理解。应该由概率密度函数得出来吧。

Experiment

试验:对比一下在这里的试验和作者在其它论文中的试验。都是5个训练样本,差别不大,可以接受。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
但是有很多疑问。
1:两次训练都训练了多少轮?10000?
2:两次训练都是用了多少类别?采用了一样的模式,只是数据集变了吗?
3:如果每次都要选择样本,那不是需要大量的标签吗?
感觉看完了和没有看一样。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值