KNN算法总结

本文详细介绍了K-近邻算法,包括其作为分类算法的基本原理、距离度量方法(如欧式距离、曼哈顿距离等)以及在机器学习流程中的应用。KNN算法的优点在于简单有效,适用于类域交叉样本的分类,但同时也存在惰性学习、计算量大等缺点。文章还提到了特征预处理的重要性,如归一化和标准化,并介绍了sklearn库中KNN的实现和超参数设置。
摘要由CSDN通过智能技术生成

K-近邻算法

【总体】 分类算法:

​ 有目标值,离散型

一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

k:
(本身取值对算法有影响,又不能通过算法训练确定值的变量叫做超参数)
距离:

scikit-learn:
机器学习工具

k近邻的sklearn的实现:
sklearn.neighbors.KNeighborsClassifier(n_neighbors=5)

  .fit(x,y)    # 训练数据集的特征值和目标值
  .predict(x)  # 需要预测的而数据集合的特征值
距离度量的几个方式:

1 欧式距离(Euclidean Distance):

2 曼哈顿距离(Manhattan Distance):

3 切比雪夫距离 (Chebyshev Distance):

4 闵可夫斯基距离(Minkowski Distance):

前四个距离公式小结:前面四个距离公式都是把单位相同看待了,所以计算过程不是很科学

编辑距离(汉明距离):将其中一个变为另外一个所需要作的最小字符替换次数(包含字符的不同,小于,大于)

apple
appl

K值过小:
容易受到异常点的影响 容易过拟合
k值过大:
受到样本均衡的问题 容易欠拟合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值