懈怠ing……
洛谷P1030 求先序排列
题目描述
给出一棵二叉树的中序与后序排列。求出它的先序排列。(约定树结点用不同的大写字母表示,长度<=8)。
输入输出格式输入格式:
2行,均为大写字母组成的字符串,表示一棵二叉树的中序与后序排列。
输出格式:
1行,表示一棵二叉树的先序。输入输出样例
输入样例#1:
BADC
BDCA
输出样例#1:
ABCD
就是一个普通的树啦,不过因为此前并没有接触过树……所以还是想了好一会……其实稍微有常识的人都应该看出后序排列的最后一个肯定是根,那么我们得到根输出后,从根出发,把左右子树分别递归就可以得到先序排列了~反正先序排列根在最前
//////////////////////////////////
//
//By frostwing98
//17.8.28
//
//////////////////////////////////
#include <cstdio>
#include <iostream>
#include <string>
using namespace std;
void preorder(string midorder, string postorder) {
if (midorder.size() > 0) {
char in = postorder[postorder.size() - 1];
cout << in;
int index = midorder.find(in);
preorder(midorder.substr(0, index), postorder.substr(0, index));
preorder(midorder.substr(index + 1), postorder.substr(index,midorder.size() - 1 - index));
}
}
int main(void)
{
string midorder, postorder;
cin >> midorder;
cin >> postorder;
preorder(midorder, postorder);
return 0;
}
液!
洛谷P1031 均分纸牌
感觉这个略好玩就戳进来了……没想到居然是贪心啊==姿势还是不够,要学习一个……
题目描述
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若干张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
①9②8③17④6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
输入输出格式输入格式:
键盘输入文件名。文件格式:
N(N 堆纸牌,1 <= N <= 100)
A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出格式:
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。输入输出样例
输入样例#1:
4
9 8 17 6
输出样例#1:
3
关键在于,对特定的牌堆A,得到/给出牌的先后对整个结果没有影响,换句话说,每一步的决策对后面的决策没有任何影响,这个完全是可以同时进行的,那么就可以使用贪心算法,强行从头开始,一遍循环就ok。
首先要减去平均值方便计算的啦。
//////////////////////////////////
//
//By frostwing98
//17.8.28
//
//////////////////////////////////
#include <cstdio>
#include <iostream>
#include <string>
#define MAXN 100
using namespace std;
int ave(int number, int data[]) {
int sum=0;
for (int i = 0; i < number; i++)sum += data[i];
return sum / number;
}
int go(int number, int data[]) {
int count = 0;
int average = ave(number, data);
for (int i = 0; i < number; i++) {
data[i] -= average;
}
for (int i = 0; i < number-1; i++) {
if (data[i] != 0) {
data[i + 1] += data[i];
count++;
}
}
cout << count;
return count;
}
int main(void)
{
int number;
int data[MAXN];
cin >> number;
for (int i = 0; i < number; i++) {
cin >> data[i];
}
go(number, data);
return 0;
}