Leetcode 279. Perfect Squares (python+cpp)

题目

在这里插入图片描述

解法1:暴力recursion(TLE):

class Solution:
    def numSquares(self, n: int) -> int:
        def helper(curr,remain):
            nonlocal ans
            if remain<0:
                return
            if remain==0:
                ans = min(ans,curr)
                return
            for num in square_numbers:
                helper(curr+1,remain-num*num)
        
        if n == 0 or n==1:
            return n
        ans = float('inf')
        square_numbers = [i for i in range(1,n//2+1)]
        helper(0,n)
        return ans

解法2:memorization+recursion(TLE)

python解法:

class Solution:
    def numSquares(self, n: int) -> int:
        def helper(remain):
            if memo[remain] != float('inf'):
                return memo[remain]
            if remain==0:
                return 0
            for num in square_numbers:
                if num<=remain:
                    memo[remain] = min(memo[remain],1+helper(remain-num))
            return memo[remain]
        
        if n == 0 or n==1:
            return n
        memo = [float('inf')]*(n+1)
        square_numbers = [i*i for i in range(1,int(n**0.5)+1)]
        return helper(n)

C++解法:

class Solution {
public:
    int numSquares(int n) {
        if (n==0 || n==1) return n;
        vector<int> square_numbers;
        for (int i=1;i<n/2+1;i++){
            square_numbers.push_back(i);
        }
        vector<int> memo(n+1,INT_MAX);
        return helper(n,memo,square_numbers);
        
    }
    int helper(int remain,vector<int>& memo,vector<int> square_numbers){
        if (memo[remain] != INT_MAX) return memo[remain];
        if (remain==0) return 0;
        for (auto num:square_numbers){
            if (num*num<=remain){
                memo[remain] = min(memo[remain],1+helper(remain-num*num,memo,square_numbers));
            }
        }
        return memo[remain];
    }
};

recursion解法加上memorization居然还是TLE,挺惊讶的。不过对理解recursion还是有好处的

解法3:动态规划

对于分割类型题,动态规划的状态转移方程通常并不依赖相邻的位置,而是依赖于满足分割 条件的位置。我们定义一个一维矩阵 dp,其中 dp[i] 表示数字 i 最少可以由几个完全平方数相加 构成。在本题中,位置i只依赖i- k2 的位置,如i-1、i-4、i-9等等,才能满足完全平方分割 的条件。因此dp[i]可以取的最小值即为1+min(dp[i-1],dp[i-4],dp[i-9]···)。
python代码如下:

class Solution:
    def numSquares(self, n: int) -> int:
        dp = [float('inf')]*(n+1)
        dp[0] = 0
        for i in range(1,n+1):
            j = 1
            while j*j<=i:
                dp[i] = min(dp[i], dp[i-j*j] + 1)
                j+=1
        return dp[n]

这种解法有可能会TLE,可以稍微改进一下就是把平方数预存一下,避免重复的平方计算,代码如下:

class Solution:
    def numSquares(self, n: int) -> int:
        # dp解法2
        square_nums = [i**2 for i in range(0, int(math.sqrt(n))+1)]
        
        dp = [float('inf')] * (n+1)
        # bottom case
        dp[0] = 0
        
        for i in range(1, n+1):
            for square in square_nums:
                if i < square:
                    break
                dp[i] = min(dp[i], dp[i-square] + 1)
        
        return dp[-1]

C++版本dp解法代码如下:

class Solution {
public:
    int numSquares(int n) {
        vector<int> dp(n+1,INT_MAX);
        dp[0] = 0;
        for (int i=1;i<=n;i++){
            for (int j=1;j*j<=i;j++){
                dp[i] = min(dp[i], dp[i-j*j] + 1);
            }
        } return dp[n];
    }
};

相对来说C++的速度自然快很多,不会出现TLE的情况

解法4:greedy by recursion

这种解法的核心思想就是通过recursion把数字breakdown成很多的子部分,然后通过递归的判断子部分是否能用平方和的方式来表示,具体如下:

  • 我们定义一个function,这个function接受两个参数,一个是当前要被分割的数字n,另一个是需要被分割成几部分count,函数返回值是n是否能被分割成count个部分,每个部分是一个平方数
  • count从小到大开始遍历,最先成功的就是我们的答案
    python代码如下:
class Solution:
    def numSquares(self, n: int) -> int:
        # greedy + recursion 解法
        def can_divided_by(n,count):
            if count == 1:
                return n in square_nums
            
            for k in square_nums:
                if can_divided_by(n-k,count-1):
                    return True
            return False
        
        square_nums = [i*i for i in range(1,int(n**0.5)+1)]
        for count in range(1,n+1):
            if can_divided_by(n,count):
                return count

C++版本代码如下:

class Solution {
public:
    int numSquares(int n) {
        set<int> square_nums;
        for (int i=1;i*i<=n;i++){
            square_nums.insert(i*i);
        }
        
        for (int count=1;count<=n;count++){
            if (can_divided_by(n,count,square_nums)) return count;
        } return 0;
    }
    bool can_divided_by(int n, int count, set<int>& square_nums){
        if (count==1) return square_nums.find(n)!=square_nums.end();
        
        for (auto k:square_nums){
            if (can_divided_by(n-k,count-1,square_nums)) return true;
        } return false;
    }
};

参考链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值