九袋面
码龄8年
关注
提问 私信
  • 博客:27,274
    27,274
    总访问量
  • 18
    原创
  • 364,238
    排名
  • 6
    粉丝
  • 0
    铁粉

个人简介:阿巴阿巴

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2017-03-10
博客简介:

qq_37840762的博客

查看详细资料
个人成就
  • 获得16次点赞
  • 内容获得2次评论
  • 获得92次收藏
  • 代码片获得144次分享
创作历程
  • 18篇
    2021年
成就勋章
TA的专栏
  • Video-Text Retrieval
    1篇
  • hash视频检索
    3篇
  • hash video retrieval
    3篇
  • pytorch
    11篇
  • Theano语法
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Video-Text Retrieval论文汇总

Video-Text Retrieval:2020 CVPR ViT An Image Is Worth 16X16 Words Transformers for image recognition at scale 2021CVPR Dual Encoder Frozen in Time A Joint Video and Image Encoder for End-to-End Retrieval 2021ELSEVIER MAN Multi...
原创
发布博客 2021.11.01 ·
857 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

使用pytorch构建LSTM_AE模型的两种方式

2.基本LSTM_Unit计算——基本LSTM_AE结构3.自定义LSTM_Unit计算——自定义LSTM_AE结构1.LSTM-Encoder-Decoder模型结构及简要解析图基本lstm计算单元
原创
发布博客 2021.08.11 ·
5998 阅读 ·
6 点赞 ·
1 评论 ·
77 收藏

对input进行维度排列变换——permute()

在为神经网络准备输入数据时,我们需要指导网络需要的数据各维度代表什么,比如网络需要的输入按照如下方式排列(seq_size,batch_size,input_feature_size);而我们手中的数据是按另一种方式排列的:(batch_size,seq_size,input_feature_size);这时有个十分方便的函数供我们使用,可以看到只需要将手中输入数据的第0维和第1维重新排列即可得到期望的输入格式,即简单调用[tensor].permute(1,0,2)以下是pytor..
原创
发布博客 2021.08.04 ·
1505 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

Deep Neural Networks with Pytorch(9)

目录9.1 卷积-kernel_size,stride,zero_padding9.2 Activation Function & Max pooling9.3 多输入多输出通道9.4 卷积神经网络-CNN使用GPU资源Torchvision模型9.1 卷积-kernel_size,stride,zero_padding位置无关性,近邻关系,更少的参数卷积通过查看相关位置而不是绝对位置来解决位置相关问题9.2 Activation Function...
原创
发布博客 2021.07.31 ·
408 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Neural Networks with Pytorch(8)

目录8.1 Deep Neural Networks-nn.ModuleList()8.2 Dropoutdropoutpytorch实现dropout8.2 Neural Network Initialization Weights1.不初始化权重具有的问题2.不同的网络参数初始化方法:缺省方法,泽西尔方法,何方法8.3 Gradient Descent with Momentum1.什么是动量momentum,动量如何解决陷入鞍点问题2.什么是动量mome...
原创
发布博客 2021.07.31 ·
213 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Neural Networks with Pytorch(7)

目录7.1 神经网络1.带有两个神经元的隐层的神经网络2使用nn.Module和nn.Sequential两种方法创建该神经网络3.训练神经网络7.2 神经网络-更多隐层单元7.3 神经网络-输入特征维度增加7.5 pytorch中backward()方法7.6 激活函数7.1 神经网络1.带有两个神经元的隐层的神经网络2使用nn.Module和nn.Sequential两种方法创建该神经网络3.训练神经网络1.带有两个神经元的隐层的神经网络...
原创
发布博客 2021.07.31 ·
546 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Neural Networks with Pytorch(6)

目录6.1 Softmax1.softmax 1D2.softmax 2D6.2 Softmax函数6.3 pytorch用Softmax实现分类6.1 Softmax1.softmax 1D2.softmax 2Dsoftmax 1D,输入特征是一维的情况多类别分类线性模型softmax,如图所示,对于每一个一维样本,三条直线分别有不同的输出值,将样本点归于预测值的最大的那条直线代表的类别:图6.1-1 softmax对于一维情况softm...
原创
发布博客 2021.07.31 ·
259 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Neural Networks with Pytorch(5)

目录5.0 Linear Classifier and Logistic Regression1.Logistic regression定义2.Logistic Regression用pytorch实现1.logistic function2.用nn.Modules创建自定义模型3.nn.Sequential5.2 Bernoulli分布和最大似然估计5.3 Logistic Regression Cross-Entropy Loss1.均方误差的问题2交叉...
原创
发布博客 2021.07.31 ·
343 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Neural Networks with Pytorch(3)

目录3.1 Stochastic Gradient Descent1.随机梯度下降2.Data Loader+SGD3.2 Mini-batch Gradient Descent1.Mini-batch梯度下降2.pytorch中的mini-batch梯度下降3.3 pytorch中的Optimization3.4 Training,Validation and Test Split1 训练集和验证集的作用2 如何训练,验证模型并保存模型3.1 ...
原创
发布博客 2021.07.31 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Neural Networks with Pytorch(2)

目录2.1 Linear Regression in 1D prediction1.linear regression2.pytorch中:Linear类,如何通过nn.module自定义层2.2 Linear Regression Training1.训练Training2.损失Loss①梯度下降是什么②学习率learning rate选择的问题③何时停止梯度下降④Cost2.1 Linear Regression in 1D prediction1.lin
原创
发布博客 2021.07.31 ·
377 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Deep Neural Networks with Pytorch(1)

目录1.Overview of Tensors1维和2维张量2.导数和梯度3.Datasets类1.1Tensor 1D1.数据类型2.索引和切片3.基本操作4.通用函数1.2 Tensor 2D12D Tensor例子2.创建2D Tensor3. 2D Tensor索引和切片4.常用操作1.3 pytorch中导数和梯度1.4 简单的Dataset1.如何创建一个Dataset类2.如何创建Transform类3.如何Comp.
原创
发布博客 2021.07.31 ·
396 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

pytorch中detach()和clone()的区别

detach()方法 得到一个和源张量共享内存,但没有梯度信息的张量,不参与计算图的梯度计算clone()方法 开辟新内存空间,其值和源张量一样,参与计算图中梯度计算并可将梯度信息传递到源张量进行累积,但通过clone方法得到的张量其只是一个中间值,梯度为Noneimport torcha=torch.tensor(2.0,requires_grad=True)b=a.clone() #参与计算图梯度计算,但是和a不是同一内存,改变b值不影响a值c=a.detach() ...
原创
发布博客 2021.07.26 ·
1231 阅读 ·
3 点赞 ·
0 评论 ·
5 收藏

theano中scan简明理解

两点说明:theano的语法习惯是先定义类型,最后赋值的做法 theano中scan函数是用来做循环使用的。 最简单的其形式如下:theano.scan(fn ,squences ,outputs_info ,non_sequences) 其中,fn是循环函数,squences ,outputs_info ,non_sequences都是fn的参数,简明解释如下:fn:循环函数squence:以时序方式给出的参数,形如[s1,s2,...st-1,st]...
原创
发布博客 2021.07.12 ·
302 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

hash video retrieval论文

2016 DVSH Deep Visual-Semantic Hashing for Cross-Modal Retrieval 2016 ICMR CAH Correlation Autoencoder Hashing for Supervised Cross-Modal Search 2016 SRH Supervised Recurrent Hashing for Large Scale Video Retr...
原创
发布博客 2021.07.05 ·
3973 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

hash video retrieval 第二周汇报

Hash deep 2021 ELSEVIER Classification-enhancement deep hashing for large-scale video retrieval 2021 Sensors A Supervised Video Hashing Method Based on a Deep 3D Convolutional Neural Network for Large-Scale Video Retri
原创
发布博客 2021.06.25 ·
525 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

hash video retrieval 第一周汇报

Hash deep 2021 TIP Semantics-Aware Spatial-Temporal Binaries for Cross-Modal Video Retrieval
原创
发布博客 2021.06.25 ·
9460 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

python中的name mangle机制

#测试python中的name mangle机制class A: __attr1=1 def __init__(self): self.attr2=2 @classmethod def getAttr1(cls): return cls.__attr1 def getAttr2(self): return self.__attr2
原创
发布博客 2021.06.18 ·
263 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

QBIVR

NonDeep Hash2017 ACM-MMEfficient Binary Coding for Subspace-based Query-by-Image Video Retrievalhttps://dl.acm.org/doi/abs/10.1145/3123266.31233922020 IEEE-TMBoosting Temporal Binary Coding for Large-Scale Video Searchhttps://ieeexpl...
原创
发布博客 2021.05.14 ·
126 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多