使用教材
本文使用教材:《工科研究生教材·数学系列·应用随机过程》何春雄 编;华南理工大学出版社
第四章习题
A7. 设随机过程
ξ
=
{
ξ
(
t
)
=
A
c
o
s
(
ω
0
t
+
Φ
)
,
t
∈
(
−
∞
,
∞
)
}
\xi = \{ \xi(t) = Acos(\omega_0 t + \Phi) ,t\in(-\infty, \infty)\}
ξ={ξ(t)=Acos(ω0t+Φ),t∈(−∞,∞)}
其中
ω
0
\omega_0
ω0是常数,
A
A
A与
Φ
\Phi
Φ是相互独立的随机变量,
Φ
\Phi
Φ服从区间
[
0
,
2
π
]
[0, 2\pi]
[0,2π]上的均匀分布。试问
ξ
\xi
ξ是否具有各态历经性?
解:
这里只验证关于期望的各态历经性,不验证关于相关函数的各态历经性。
根据教材中的定理4.3.3(p109):
定理4.3.3 设 ξ = { ξ ( t ) , t ∈ ( − ∞ , ∞ ) } \xi = \{ \xi (t), t \in (-\infty, \infty )\} ξ={ξ(t),t∈(−∞,∞)} 为均方连续的平稳过程,则 ξ \xi ξ关于均值具有各态历经性的充要条件是:
lim x → + ∞ 1 2 T ∫ − 2 T 2 T ( 1 − ∣ τ ∣ 2 2 T ) [ R ξ ( τ ) − ∣ m ξ ∣ 2 ] d τ = 0 {\lim_{x \to +\infty}} \frac{1}{2T} \int_{-2T}^{2T}(1-\frac{|\tau|^2}{2T})[R_\xi(\tau) - |m_\xi|^2]d\tau = 0 limx→+∞2T1∫−2T2T(1−2T∣τ∣2)[Rξ(τ)−∣mξ∣2]dτ=0
A8. 设随机过程
ξ
=
{
ξ
(
t
)
=
A
c
o
s
t
+
B
s
i
n
t
,
t
∈
(
−
∞
,
∞
)
}
\xi = \{ \xi(t) = Acost + Bsint ,t\in(-\infty, \infty)\}
ξ={ξ(t)=Acost+Bsint,t∈(−∞,∞)}
其中
A
A
A与
B
B
B是零均值不相关的随机变量,且
E
[
A
2
]
=
E
[
B
2
]
E[A^2]=E[B^2]
E[A2]=E[B2]。试证
ξ
\xi
ξ关于数学期望具有各态历经性,而关于相关函数不具有各态历经性。
解:
这里只验证关于期望的各态历经性,不验证关于相关函数的各态历经性。
A11. 设随机过程
ξ
=
{
ξ
(
t
)
=
A
c
o
s
(
ω
0
t
+
Φ
)
,
t
∈
(
−
∞
,
∞
)
}
\xi = \{ \xi(t) = Acos(\omega_0 t + \Phi) ,t\in(-\infty, \infty)\}
ξ={ξ(t)=Acos(ω0t+Φ),t∈(−∞,∞)}
其中
A
A
A、
ω
\omega
ω、
Φ
\Phi
Φ是相互独立的随机变量,而
A
A
A的均值为2, 方差为4;
Φ
\Phi
Φ在
(
−
π
,
π
)
(-\pi, \pi)
(−π,π)上均匀分布;
ω
\omega
ω在
(
−
5
,
5
)
(-5,5)
(−5,5)上均匀分布。试求
ξ
\xi
ξ是否平稳?是否具有各态历经性?
注意:流传的答案的解法是不正确的
以下的解法是用期望遍历性的定义去验证的,
但是用定义验证是麻烦的,
以下解法把均方积分当成了普通积分进行求解,是不正确的,
均方积分≠普通积分(虽然在大多数情况下两者算出来的结果是一样的,但过程是不同的)
定义4.3.2 设 ξ = { ξ ( t ) , t ∈ ( − ∞ , ∞ ) } \xi=\{\xi(t), t \in (- \infty, \infty)\} ξ={ξ(t),t∈(−∞,∞)}为均方连续的平稳过程。若: 1 2 T ∫ − T T ξ ( t ) d t → L 2 m ξ ( T → ∞ ) \frac{1}{2T}\int_{-T}^{T}\xi(t)dt \xrightarrow{L^2} m_{\xi}(T \to \infty) 2T1∫−TTξ(t)dtL2mξ(T→∞)则称 ξ \xi ξ关于均值具有各态历经性。若对任意 τ ∈ ( − ∞ , + ∞ ) \tau \in (-\infty, +\infty) τ∈(−∞,+∞)有
1 2 T ∫ − T T ξ ( t ) ξ ( t − τ ) ‾ d t → L 2 R ξ ( τ ) ( T → ∞ ) \frac{1}{2T}\int_{-T}^{T} \xi(t) \overline{\xi(t-\tau)} dt \xrightarrow{L^2} R_{\xi}(\tau)(T \to \infty) 2T1∫−TTξ(t)ξ(t−τ)dtL2Rξ(τ)(T→∞)
则称 ξ \xi ξ关于相关函数具有各态历经性。