应用随机过程-复习笔记-Chapter4-关于期望的各态历经性习题答案

使用教材

本文使用教材:《工科研究生教材·数学系列·应用随机过程》何春雄 编;华南理工大学出版社
在这里插入图片描述

第四章习题

A7. 设随机过程
ξ = { ξ ( t ) = A c o s ( ω 0 t + Φ ) , t ∈ ( − ∞ , ∞ ) } \xi = \{ \xi(t) = Acos(\omega_0 t + \Phi) ,t\in(-\infty, \infty)\} ξ={ξ(t)=Acos(ω0t+Φ),t(,)}
其中 ω 0 \omega_0 ω0是常数, A A A Φ \Phi Φ是相互独立的随机变量, Φ \Phi Φ服从区间 [ 0 , 2 π ] [0, 2\pi] [0,2π]上的均匀分布。试问 ξ \xi ξ是否具有各态历经性?


这里只验证关于期望的各态历经性,不验证关于相关函数的各态历经性。

根据教材中的定理4.3.3(p109):

定理4.3.3 设 ξ = { ξ ( t ) , t ∈ ( − ∞ , ∞ ) } \xi = \{ \xi (t), t \in (-\infty, \infty )\} ξ={ξ(t),t(,)} 为均方连续的平稳过程,则 ξ \xi ξ关于均值具有各态历经性的充要条件是:
lim ⁡ x → + ∞ 1 2 T ∫ − 2 T 2 T ( 1 − ∣ τ ∣ 2 2 T ) [ R ξ ( τ ) − ∣ m ξ ∣ 2 ] d τ = 0 {\lim_{x \to +\infty}} \frac{1}{2T} \int_{-2T}^{2T}(1-\frac{|\tau|^2}{2T})[R_\xi(\tau) - |m_\xi|^2]d\tau = 0 limx+2T12T2T(12Tτ2)[Rξ(τ)mξ2]dτ=0

在这里插入图片描述


A8. 设随机过程
ξ = { ξ ( t ) = A c o s t + B s i n t , t ∈ ( − ∞ , ∞ ) } \xi = \{ \xi(t) = Acost + Bsint ,t\in(-\infty, \infty)\} ξ={ξ(t)=Acost+Bsint,t(,)}
其中 A A A B B B是零均值不相关的随机变量,且 E [ A 2 ] = E [ B 2 ] E[A^2]=E[B^2] E[A2]=E[B2]。试证 ξ \xi ξ关于数学期望具有各态历经性,而关于相关函数不具有各态历经性。

解:
这里只验证关于期望的各态历经性,不验证关于相关函数的各态历经性。
在这里插入图片描述


A11. 设随机过程
ξ = { ξ ( t ) = A c o s ( ω 0 t + Φ ) , t ∈ ( − ∞ , ∞ ) } \xi = \{ \xi(t) = Acos(\omega_0 t + \Phi) ,t\in(-\infty, \infty)\} ξ={ξ(t)=Acos(ω0t+Φ),t(,)}
其中 A A A ω \omega ω Φ \Phi Φ是相互独立的随机变量,而 A A A的均值为2, 方差为4; Φ \Phi Φ ( − π , π ) (-\pi, \pi) (π,π)上均匀分布; ω \omega ω ( − 5 , 5 ) (-5,5) (5,5)上均匀分布。试求 ξ \xi ξ是否平稳?是否具有各态历经性?

在这里插入图片描述
在这里插入图片描述

注意:流传的答案的解法是不正确的

以下的解法是用期望遍历性的定义去验证的,
但是用定义验证是麻烦的,
以下解法把均方积分当成了普通积分进行求解,是不正确的,
均方积分≠普通积分(虽然在大多数情况下两者算出来的结果是一样的,但过程是不同的)

定义4.3.2 设 ξ = { ξ ( t ) , t ∈ ( − ∞ , ∞ ) } \xi=\{\xi(t), t \in (- \infty, \infty)\} ξ={ξ(t),t(,)}为均方连续的平稳过程。若: 1 2 T ∫ − T T ξ ( t ) d t → L 2 m ξ ( T → ∞ ) \frac{1}{2T}\int_{-T}^{T}\xi(t)dt \xrightarrow{L^2} m_{\xi}(T \to \infty) 2T1TTξ(t)dtL2 mξ(T)则称 ξ \xi ξ关于均值具有各态历经性。若对任意 τ ∈ ( − ∞ , + ∞ ) \tau \in (-\infty, +\infty) τ(,+)
1 2 T ∫ − T T ξ ( t ) ξ ( t − τ ) ‾ d t → L 2 R ξ ( τ ) ( T → ∞ ) \frac{1}{2T}\int_{-T}^{T} \xi(t) \overline{\xi(t-\tau)} dt \xrightarrow{L^2} R_{\xi}(\tau)(T \to \infty) 2T1TTξ(t)ξ(tτ)dtL2 Rξ(τ)(T)
则称 ξ \xi ξ关于相关函数具有各态历经性。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值