# 问题

# 生成样本点
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=500,
n_features=10,
n_classes=5,
n_informative=4,
random_state=0)
# 默认绘图
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 8))
plt.scatter(X[:, 0], X[:, 1], marker='o')

# 解决方案

#### 1. 指定参数c

# 1. 指定参数c
plt.figure(figsize=(8, 8))
plt.scatter(X[:, 0], X[:, 1], marker='o', c='g')

（图片来源：https://blog.csdn.net/qiu931110/article/details/68130199

b——blue
c——cyan
g——green
k——black
m——magenta
r——red
w——white
y——yellow

#### 2. c=list，设置cmap

# 2. c=y，设置cmap
plt.figure(figsize=(8, 8))
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y, cmap='coolwarm')

cmap 可以的取值可多了…演示一下：

plt.figure(figsize=(12, 8))
plt.subplot(231)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y, cmap='plasma')
plt.subplot(232)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y, cmap='Oranges')
plt.subplot(233)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y, cmap='summer')
plt.subplot(234)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y, cmap='Spectral')
plt.subplot(235)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y, cmap='Set1')
plt.subplot(236)
plt.scatter(X[:, 0], X[:, 1], marker='o', c=y, cmap='rainbow')
plt.show()

colormap，也称color bar，matplotlib模块中内嵌了一大批常用的colormaps。请参阅官方文档 color example code: colormaps_reference.py

import numpy as np
import matplotlib.pyplot as plt

# Have colormaps separated into categories:
# http://matplotlib.org/examples/color/colormaps_reference.html
cmaps = [('Perceptually Uniform Sequential', [
'viridis', 'plasma', 'inferno', 'magma']),
('Sequential', [
'Greys', 'Purples', 'Blues', 'Greens', 'Oranges', 'Reds',
'YlOrBr', 'YlOrRd', 'OrRd', 'PuRd', 'RdPu', 'BuPu',
'GnBu', 'PuBu', 'YlGnBu', 'PuBuGn', 'BuGn', 'YlGn']),
('Sequential (2)', [
'binary', 'gist_yarg', 'gist_gray', 'gray', 'bone', 'pink',
'spring', 'summer', 'autumn', 'winter', 'cool', 'Wistia',
'hot', 'afmhot', 'gist_heat', 'copper']),
('Diverging', [
'PiYG', 'PRGn', 'BrBG', 'PuOr', 'RdGy', 'RdBu',
'RdYlBu', 'RdYlGn', 'Spectral', 'coolwarm', 'bwr', 'seismic']),
('Qualitative', [
'Pastel1', 'Pastel2', 'Paired', 'Accent',
'Dark2', 'Set1', 'Set2', 'Set3',
'tab10', 'tab20', 'tab20b', 'tab20c']),
('Miscellaneous', [
'flag', 'prism', 'ocean', 'gist_earth', 'terrain', 'gist_stern',
'gnuplot', 'gnuplot2', 'CMRmap', 'cubehelix', 'brg', 'hsv',
'gist_rainbow', 'rainbow', 'jet', 'nipy_spectral', 'gist_ncar'])]

nrows = max(len(cmap_list) for cmap_category, cmap_list in cmaps)

fig, axes = plt.subplots(nrows=nrows)
axes[0].set_title(cmap_category + ' colormaps', fontsize=14)

for ax, name in zip(axes, cmap_list):
pos = list(ax.get_position().bounds)
x_text = pos[0] - 0.01
y_text = pos[1] + pos[3]/2.
fig.text(x_text, y_text, name, va='center', ha='right', fontsize=10)

# Turn off *all* ticks & spines, not just the ones with colormaps.
for ax in axes:
ax.set_axis_off()

for cmap_category, cmap_list in cmaps:

plt.show()

‘Perceptually Uniform Sequential’：

‘Sequential’：

‘Sequential2’：

Diverging：

Qualitative：

Miscellaneous：

# 参考来源

10-19 1万+

01-18 3万+

08-30 1万+

04-20 2万+

06-25 1万+

11-09 10万+

08-09 4万+

03-14 130

03-19 1万+

03-29 15万+

04-09 1万+

11-20 3090

07-08 2651

02-15 5575

03-14 9655

04-09 213

06-30 2061

06-05 2万+

08-16 582

03-13 1万+

03-30 4万+

03-27 6万+

05-08 29

10-09 5万+

04-20 112

11-11 1万+

03-16 2万+

03-01 2001

#### python-plt.scatter参数详解

©️2019 CSDN 皮肤主题: 游动-白 设计师: 上身试试