https://www.nowcoder.com/acm/contest/139#question
A
题意:对于矩阵【n,m】,每个位置的元素<=其右、下的元素。
思路:比赛完全想错思路,赛后看题解,,终于摸懂,就是转换思路,0,1之间可用一条线分隔开,1,2之间也可以用一条直线分隔开,而每条直线,从起点到终点,一共需要经过(n+m)条边,即(n+m)次选择行方向还是列方向,一定要选择m次列方向,即C【(n+m),m】,两条线,随机组合,取平方。然后需要除去两条线交叉的形式,这时候就像直播讲解说的,将1,2的分隔线向右下移一格,这样只需要求交叉的部分就可以了,也可以理解为凡是交叉的,可以将相交的后半部分互换,然后就就是[1,0]到[n-1,m]和[0,1]到[n,m-1]的组合数之积了。
代码:
PS:这题理解了,代码巨简单,,直接粘标称了,,
#include <bits/stdc++.h>
const int MOD = 1e9 + 7;
const int N = 1005;
int dp[N][N];
void update(int& x, int a)
{
x += a;
if (x >= MOD) {
x -= MOD;
}
}
int sqr(int x)
{
return 1LL * x * x % MOD;
}
int main()
{
dp[0][0] = 1;
for (int i = 0; i < N; ++ i) {
for (int j = 0; j < N; ++ j) {
if (i) {
update(dp[i][j], dp[i - 1][j]);
}
if (j) {
update(dp[i][j], dp[i][j - 1]);
}
}
}
int n, m;
while (scanf("%d%d", &n, &m) == 2) {
printf("%d\n", (sqr(dp[n][m]) + MOD - 1LL * dp[n - 1][m + 1] * dp[n + 1][m - 1] % MOD) % MOD);
}
}
B
题意:n*n的矩阵,只能填0,1,2,求是对角线为0的每行和为2 的对称矩阵的种类数
思路:矩阵可以理解成n个点的邻接矩阵。每个点的度都是2,没有自环,可以有重边。求种数。
又可以推得每个点都属于且仅属于一个环
这个题比赛的时候也没有做出来,,完全没有想到可以化成图 的关系,。。
对于n个点,可以理解为n-1个旧点加一个新点,然后考虑新点可以与哪些旧点组成一个环,
取出一个点的情况和剩下两个点的情况
因为不存在对称的情况,所以需要单独考虑。,剩下一个点是0,全部取出与新点组成一个环的情况有(n-1)!/2的情况
dp[n]=∑(i=2,,n-3)dp[n-1-i]*(i!)/2+(n-1)!/2;
然后简化公式,dp【n】-dp【n-1】(n-1)可以消掉∑,移向得出dp【n】的公式
dp[n]=(n-1)(dp[n-1]+dp[n-2])-(n-1)(n-2)dp[n-3]/2;
代码:
#include <bits/stdc++.h>
long long dp[100005];
int mod;
int main()
{
int n;
while (scanf("%d%d", &n, &mod) == 2) {
dp[0]=1;
dp[1]=0;
dp[2]=1;
dp[3]=1;
for(long long i=4;i<=n;i++)
{
dp[i]=(((i-1)*(dp[i-1]+dp[i-2]))%mod-((i-1)*(i-2)/2*dp[i-3])%mod+mod)%mod;
}
printf("%lld\n", dp[n]);
}
}
D
题意:两个图,均有n个点,第一个图有m1条边,第二个图有m2条边,求第二个图的子图与第一个图同构的数量
思路:这个题因为数据量小,所以很容易想到搜索,但是同构的判断卡了一些时间,后来想到选择相同的边组成的子图是同一种同构,所以对点进行暴力匹配,最后看选出的边的组成是否选择过就可以了,这里对每条边都进行了编号,然后1<<x表示第x条边选择了
感想:这个题感觉比较水,想清楚同构用边来判断就比较简单了。听题解直播时,他讲的差不多复杂度也就这样了。。就是同构的重复取是最后除以第一个图对自己的自同构种类数
代码:
#include<bits/stdc++.h>
using namespace std;
int n,m1,m2,a,b;
int look[10][10],vis[10][10],pre[10],w[10],ans;
map<long long,int>mm;
struct AA
{
int x,y;
}pos[50];
int dfs(int rt,long long pp)
{
if(rt==n+1)
{
long long pp=0;
for(int i=1;i<=m1;i++)
{
//cout<<"~~~~ "<<i<<endl;
if(vis[pre[pos[i].x]][pre[pos[i].y]]==0) return 0;
pp|=1<<vis[pre[pos[i].x]][pre[pos[i].y]];
}
//cout<<pp<<endl;
if(mm[pp]) return 0;
ans++;
mm[pp]=1;
return 0;
}
for(int i=1;i<=n;i++)
{
if(w[i]) continue;
pre[rt]=i;
w[i]=1;
//cout<<i<<" "<<rt<<endl;
dfs(rt+1,pp*10+i);
w[i]=0;
}
return 0;
}
int main()
{
while(~scanf("%d%d%d",&n,&m1,&m2))
{
mm.clear();
memset(look,0,sizeof(look));
memset(vis,0,sizeof(vis));
memset(w,0,sizeof(w));
ans=0;
for(int i=1;i<=n;i++)
{
pre[i]=i;
}
int x,y;
for(int i=1;i<=m1;i++)
{
scanf("%d%d",&x,&y);
look[x][y]=look[y][x]=1;
pos[i].x=x;
pos[i].y=y;
}
for(int i=1;i<=m2;i++)
{
scanf("%d%d",&x,&y);
vis[x][y]=vis[y][x]=i;
}
dfs(1,0);
printf("%d\n",ans);
}
return 0;
}
J
https://www.nowcoder.com/acm/contest/139/J
题意:对于数组a,长度为n,m次询问(l,r)(开区间)外有几个不同的数?
思路:将数组延长2倍,除去区间(l,r)的所有数就可以看做是【r,n+l】的连续区间的数的个数了,这样就变成了以前做过的连续区间数的个数问题了
感想:这个题,比赛的时候想了很久没有想出来,一直在在画图推,但是最后都是失败了,离线化处理倒是很容易想到,但是扩展到两倍划到连续的就没想出来,。后来是LSD大佬A了,分享了思路,然后自己在摸索着做才做出来的。。
拓展:这个题算是求连续区间数的个数(气球颜色数)的拓展,只是多了数组拓展成两倍的处理罢了,看明白了,,代码真的不难QAQ
代码:
#include<bits/stdc++.h>
using namespace std;
int n,q,a[200005],m,num,x,y,c,v,s,t,tr[200005];
int f[200005],ans[100005],look[200005];
struct BB
{
int x,next;
}pos[200005];
struct AA
{
int id,x,y;
bool operator<(const AA &aa)const
{
if(x==aa.x) return y<aa.y;
return x<aa.x;
}
}que[100005];
int lowbit(int i)
{
return i&(-i);
}
int add(int i,int s)
{
while(i<=200000)
{
tr[i]+=s;
i+=lowbit(i);
}
return 0;
}
int sum(int i)
{
int ss=0;
while(i)
{
ss+=tr[i];
i-=lowbit(i);
}
return ss;
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
int p=0;
memset(f,-1,sizeof(f));
memset(tr,0,sizeof(tr));
s=0;
t=0;
num=0;
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
a[i+n]=a[i];
}
for(int i=n*2;i>=1;i--)
{
if(f[a[i]]==-1)
look[++t]=a[i];
pos[++p].next=f[a[i]];
pos[p].x=i;
f[a[i]]=p;
}
for(int i=1;i<=t;i++)
{
add(pos[f[a[i]]].x,1);//cout<<sum(10)<<"~~"<<endl;
}
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
que[i].id=i;
que[i].x=y;
que[i].y=n+x;
}
sort(que+1,que+1+m);
int j=1;
for(int i=1;i<=2*n;i++)
{
while(que[j].x==i)
{//cout<<"~~"<<que[j].x<<" "<<i<<" "<<que[j].y<<endl;
ans[que[j].id]=sum(que[j].y);
//cout<<sum(4)<<"###"<<endl;
j++;
if(j>m) break;
}
if(j>m) break;
add(i,-1);
f[a[i]]=pos[f[a[i]]].next;
if(f[a[i]]!=-1){
add(pos[f[a[i]]].x,1);
}
}
for(int i=1;i<=m;i++)
{
printf("%d\n",ans[i]);
}
}
return 0;
}