剑指offer_13_机器人的运动范围

剑指offer_13_机器人的运动范围

描述

中等
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

示例 1:

输入:m = 2, n = 3, k = 1
输出:3

示例 2:

输入:m = 3, n = 1, k = 0
输出:1

提示:

1 <= n,m <= 100
0 <= k <= 20

解题

设坐标位x和y
由于

1 <= n,m <= 100

所以坐标数位之和为

x // 10 + x % 10 + y // 10 + y % 10

机器人从(0,0)开始出发,每次向下或向右走,进行BFS

class Solution:
    def movingCount(self, m: int, n: int, k: int) -> int:
        visited = set() # 用于判断是否已经经过该坐标
        queue = [(0, 0)]
        while queue:
            x, y = queue.pop(0)
            # 判断坐标是否有效
            if x >= n or y >= m or (x // 10 + x % 10 + y // 10 + y % 10) > k or (x, y) in visited:
                continue
            visited.add((x, y))
            queue.append((x+1, y))
            queue.append((x, y+1))
        
        return len(visited)

DFS

class Solution:
    def movingCount(self, m: int, n: int, k: int) -> int:
        visited = set()

        def dfs(x, y):
            if x >= n or y >= m or (x // 10 + x % 10 + y // 10 + y % 10) > k or (x, y) in visited:
                return 0
            visited.add((x, y))
            # 直接返回有效的坐标数量
            return 1 + dfs(x+1, y) + dfs(x, y+1)
        
        return dfs(0, 0)

当然,并不是所有的符合条件的坐标都能被计算到
有些地方虽然满足数位和条件,但是没有路径可以到达

在这里插入图片描述
图来源于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值