剑指offer_13_机器人的运动范围
描述
中等
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
解题
设坐标位x和y
由于
1 <= n,m <= 100
所以坐标数位之和为
x // 10 + x % 10 + y // 10 + y % 10
机器人从(0,0)开始出发,每次向下或向右走,进行BFS
class Solution:
def movingCount(self, m: int, n: int, k: int) -> int:
visited = set() # 用于判断是否已经经过该坐标
queue = [(0, 0)]
while queue:
x, y = queue.pop(0)
# 判断坐标是否有效
if x >= n or y >= m or (x // 10 + x % 10 + y // 10 + y % 10) > k or (x, y) in visited:
continue
visited.add((x, y))
queue.append((x+1, y))
queue.append((x, y+1))
return len(visited)
DFS
class Solution:
def movingCount(self, m: int, n: int, k: int) -> int:
visited = set()
def dfs(x, y):
if x >= n or y >= m or (x // 10 + x % 10 + y // 10 + y % 10) > k or (x, y) in visited:
return 0
visited.add((x, y))
# 直接返回有效的坐标数量
return 1 + dfs(x+1, y) + dfs(x, y+1)
return dfs(0, 0)
当然,并不是所有的符合条件的坐标都能被计算到
有些地方虽然满足数位和条件,但是没有路径可以到达
图来源于这