题意:有n个教室,要在n个教室中建一些糖果屋,第i个教室建糖果屋的花费ci,不建糖果屋的教室的花费是此教室左边离它最近的糖果屋与他的距离。
思路:类似于01背包,dp[i][1]表示前i个教室第i个教室建糖果屋的最小花费,则dp[i][1]=min(dp[i-1][0],dp[i-1][1])+c[i];
dp[i][0]表示前i个教室第i个教室不建糖果屋的最小花费,则需要找到它左边的糖果屋,可以枚举离教室i的超市j的位置,然后取所有情况的最小值就可以了。
还有一个优化是防止超时的,
如何记录教室j+1~教室i的费用的和
ans+=(i-j)*(no[j+1].pos-no[j].pos);
如 x1 x2 x3
i=3,
j=2时 ans=x3-x2
j=1时 x3-x1+x2-x1=x3-x2+2*x2-2*x1=ans+(3-1)*(x2-x1)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll inf=999999999999;
struct node
{
ll pos,c;
};
node no[3010];
bool cmp(node a,node b)
{
return a.pos<b.pos;
}
int main()
{
ll dp[3010][2],i,j,l,n;
while(~scanf("%lld\n",&n))
{
for(i=1;i<=n;i++)
{
scanf("%lld%lld",&no[i].pos,&no[i].c);
}
sort(no+1,no+1+n,cmp);
memset(dp,0,sizeof(dp));
dp[1][1]=no[1].c;
dp[1][0]=inf;
for(i=2;i<=n;i++)
{
dp[i][1]=min(dp[i-1][1],dp[i-1][0])+no[i].c;//cout<<dp[i][1]<<"!"<<endl;
dp[i][0]=inf;
ll ans=0;
for(j=i-1;j>=1;j--)
{ /*ll ans=0;
for(l=i;l>j;l--)
{
ans+=no[l].pos-no[j].pos;//cout<<ans<<"!!"<<endl;
}TLE*/
ans+=(i-j)*(no[j+1].pos-no[j].pos);
dp[i][0]=min(dp[i][0],dp[j][1]+ans);
//cout<<dp[i][0]<<"!!!"<<endl;
}
}
printf("%lld\n",min(dp[n][0],dp[n][1]));
}
}
//人一我百,人百我万
//时间