gcd常见结论及gcd与斐波那契结合--hdu6363.

结论:

gcd(2^a-1,2^b-1)=2^{gcd(a,b)}-1

gcd(fib[a],fib[b])=fib[gcd(a,b)]

gcd(2^{x_{1}}-1,2^{x_{2}}-1,...,2^{x_{k}}-1)= 2^{gcd(x_{1},x_{2},...,x_{k}})}-1

http://acm.hdu.edu.cn/showproblem.php?pid=6363

f[d]表示d|gcd(x1,x2,...,xk)的方案数

d|gcd(x1,x2,..,xk)=d|x1,d|x2,...d|x3, x1+x2+...+xk=n则

x1+x2+...+xk=n/d非负整数解

f[d]=C(n/d+k-1,k-1)

g[d]表示d=gcd(x1,x2,...,xk)的方案数

枚举gcd,为求g[d],先求f[d]因为f[d]好求,然后减去gcd的倍数

#include<stdio.h>
#include<iostream>
#include<vector>
#include<string.h>
#include<algorithm>
#include<map>
#include<queue>
#include<cmath>
#include<set>
#include<map>
#define de(x) cout<<#x<<"="<<x<<endl;
#define dd(x) cout<<#x<<"="<<x<<" ";
#define rep(i,a,b) for(int i=a;i<(b);++i)
#define repd(i,a,b) for(int i=a;i>=(b);--i)
#define repp(i,a,b,t) for(int i=a;i<(b);i+=t)
#define mt(a,b) memset(a,b,sizeof(a))
#define fi first
#define se second
#define mp(u,v) make_pair(u,v)
#define sz(a) (int)a.size()
#define pb push_back
#define PI acos(-1.0)
#define qc std::ios::sync_with_stdio(false)
#define all(a) a.begin(),a.end()
using namespace std;
typedef vector<int> vi;
typedef long long ll;
typedef double db;
typedef pair<int,int> pii;

const ll mod = 1e9+7;
const int N = 2e6+6;
const double eps = 1e-6;
const int inf = 0x3f3f3f3f;

bool eq(const db &a, const db &b) { return fabs(a - b) < eps; }
bool ls(const db &a, const db &b) { return a + eps < b; }
bool le(const db &a, const db &b) { return eq(a, b) || ls(a, b); }
ll gcd(ll a,ll b) { return a==0?b:gcd(b%a,a); };
ll lcm(ll a,ll b) { return a/gcd(a,b)*b; }
ll kpow(ll a,ll b) {ll res=1;a%=mod; if(b<0) return 1; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
ll read(){
    ll x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
ll inv[N], f[N], fac[N];
ll a[N];
void init() {
    f[0] = 1; f[1] = 2;
    fac[0] = fac[1] = 1;
    inv[1]=1;
    rep(i, 2, N) {
        fac[i] = fac[i-1] * (ll)i % mod;
        inv[i] = kpow(fac[i], mod-2);
        f[i] = (f[i-1] * f[i-2]) % mod;
    }
}
ll C(int n, int m) {
    if(n < m) return 0ll;
    if(m==0 || n==m) return 1ll;
    if(n-1==m || m==1) return n;
    return fac[n] * inv[m] % mod * inv[n-m] % mod;
}
int main(){
    init();
    int T;
    scanf("%d",&T);
    while(T--) {
        int n, m;
        scanf("%d%d",&n,&m);
        mt(a, 0);
        ll sum = C(n+m-1, n), ans = 0;
        repd(g,n,1) {
            if(n%g==0) {
                ll j = n / g;
                a[g] = C(j+m-1,m-1) % mod;
                repp(k,g+g,n + 1,g) a[g] = (a[g] - a[k] + mod) % mod;
                ans = ans + a[g] * (f[g] - 1 + mod) % mod; ans %= mod;
            }
        }
        ans = ans * kpow(sum, mod-2) % mod;
        printf("%lld\n",ans);
    }
    return 0;
}

 

理论上我们只要将两者相乘,然后除于总共方案数就可以了。但是fib[g]fib[g]是一个指数级增长的函数式,所以我们需要利用欧拉函数对这个式子进行优化
欧拉函数

若(a,m)=1则aϕ(m)≡1(m)若(a,m)=1则aϕ(m)≡1(m)


所以在本题中m=109+7m=109+7

2m−1≡1(mod m)2m−1≡1(mod m)


那么

2fib[i]≡2fib[i]%(m−1)(mod m)2fib[i]≡2fib[i]%(m−1)(mod m)


本题中有关数学变化我已经全部做了较为详细的解释。我们接下来只要按照上面的思路先预处理出所有要用的值,然后分别算出来方案数和该方案对应的美丽值,然后除以总方案数就可以了

 

#include <bits/stdc++.h>

const long long MAXN = 1000000,MOD = 1000000007; 

using namespace std;
long long T,ans,N,K;
long long fib[MAXN+5],fnv[2*MAXN+5],fac[2*MAXN+5],inv[MAXN],f[MAXN];

vector<long long>d;

inline long long powmod(long long a,long long b){
    long long res=1;
    a%=MOD;
    for(;b;b>>=1){
    if(b&1)res=res*a%MOD;
    a=a*a%MOD;
    }
    return res;
}

inline void pre(){
    fib[0] = 0;fib[1] = 1;inv[1] = 1;
    fac[0] = fnv[0] = 1;
    for(int i = 2;i <= MAXN;i++) fib[i] = (fib[i-1] + fib[i-2]) % (MOD - 1);
    for(int i = 2;i <= MAXN;i++) inv[i] = (MOD-MOD/i)*inv[MOD%i]%MOD;
    for(int i = 1;i<=2*MAXN;i++) {
        fac[i] = fac[i-1] * i % MOD;
        fnv[i] = fnv[i-1] * inv[i] % MOD;       
    }
}

inline long long comb(long long a,long long b){
    return ((fac[a]*fnv[b])%MOD*fnv[a-b])%MOD;
}

int main()
{
    pre();
    scanf("%lld",&T);
    while(T--){
        scanf("%lld%lld",&N,&K);
        d.clear();
        for(int i = 1;i <= N;i++) if(N%i == 0) d.push_back(i);
        for(int i = 0;i < d.size();i++) f[i] = comb(N/d[i]+K-1,K-1);

        for(int i = d.size()-1;i >= 0;i--)
            for(int j = i + 1;j < d.size();j++)
                if(d[j]%d[i]==0)
                    f[i] = (f[i]-f[j]+MOD)%MOD;

        ans = 0;

        for(int i = 0;i < d.size();i++) ans=(ans+f[i]*(powmod(2,fib[d[i]])-1))%MOD;

        ans = ans * powmod(comb(N+K-1,K-1),MOD-2) % MOD;
        if(ans < 0) ans += MOD;
        printf("%lld\n",ans);
    }
    return 0;
} 
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值