时间复杂度为: O(log(m , n))
# -*- coding: utf-8 -*-
"""
给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1 和 nums2 不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
关键词: 递归,二分,二叉树,极限
@author: xiaozuo
"""
# left_A | right_A
# A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
# i m-i
# left_B | right_B
# B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
# j n-j
# left_part | right_part
# A[0], A[1], ..., A[i-1] | A[i], A[i+1], ..., A[m-1]
# B[0], B[1], ..., B[j-1] | B[j], B[j+1], ..., B[n-1]
# i+j m-i + n-j
def median(A, B):
# m ,n为两个数组的长度
m, n = len(A), len(B)
if m > n:
A, B, m, n = B, A, n, m
# n是较大的那个数组的长度
if n == 0:
raise ValueError
# [0, m]区间进行查找
imin, imax = 0, m
# 假设 i+j = m-i + n-j
# 如果n>=m了就说明n数组比m数组长 那就在n-j那一部分+1 于是: i+j = m-i + n-j+1
# 于是化简得到 j = ((m+n+1)/2) - i
half_len =int((m + n + 1) / 2) # 注意要整形,不然没办法查找 注意int(5/2)=2
while imin <= imax:
i = int((imin + imax) / 2)
j = half_len - i
# i>m right就为负了
if i < m and B[j-1] > A[i]:
# 说明A[i]太小了
imin = i + 1
# i<0 更不可能...
elif i > 0 and A[i-1] > B[j]:
# 说明A[i-1]太大了
imax = i - 1
else:
# 这个时候第一个条件就完成了 进入到第二个条件
# 极限思想去考虑边界情况
if i == 0:
max_of_left = B[j-1]
elif j == 0:
max_of_left = A[i-1]
# 这个是一般情况 二选一
else:
max_of_left = max(A[i-1], B[j-1])
# 如果是奇数的话 直接返回就行了
if (m + n) % 2 == 1:
return max_of_left
# 偶数的话右边也要算
if i == m:
min_of_right = B[j]
elif j == n:
min_of_right = A[i]
else:
min_of_right = min(A[i], B[j])
return (max_of_left + min_of_right) / 2.0
if __name__ == '__main__':
A = [1, 2]
B = [3, 4]
ans = median(A, B)
print(ans)