目录
问题
给定两个大小为 m 和 n 的有序数组 nums1
和 nums2
。
请你找出这两个有序数组的中位数,并且要求算法的时间复杂度为 O(log(m + n))。
你可以假设 nums1
和 nums2
不会同时为空。
示例 1:
nums1 = [1, 3]
nums2 = [2]
则中位数是 2.0
示例 2:
nums1 = [1, 2]
nums2 = [3, 4]
则中位数是 (2 + 3)/2 = 2.5
解题思路
这个题目看到,想法,即现将两个有序数组,合并为一个有序数组,之后的中位数,就很容易实现了。实现即参考python解决双指针问题中的想法。 程序二是程序一的改进版
python具体实现
程序一:
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
if nums1 ==[]:
ans = nums2[:]
elif nums1 and nums2:
ans = nums1[:]
count = 0
for i in range(len(nums1)):
if count<len(nums2):
while nums2[count]<nums1[i] :
ans.insert(count+i,nums2[count])
count +=1
if count == len(nums2):
break
if i == len(nums1)-1:
ans = ans+nums2[count:]
break
else:
ans = nums1[:]
mn = len(ans)
if mn%2 == 1:
return ans[mn//2]
else:
return (ans[mn//2]+ans[mn//2-1])/2.0
程序二
class Solution(object):
def findMedianSortedArrays(self, nums1, nums2):
"""
:type nums1: List[int]
:type nums2: List[int]
:rtype: float
"""
ind = 0
ans = nums1[:]
for i in range(0,len(nums2)):
while(ind<len(nums1)):
if nums2[i]<=nums1[ind]:
ans.insert(i+ind,nums2[i])
break
else:
ind +=1
if ind >=len(nums1): #如果nums1已遍历完,则将剩下的nums2中的内容拼到nums1结尾
ans = ans + nums2[i:]
break
mn = len(ans)
if mn%2 == 1:
return ans[mn//2]
else:
return (ans[mn//2]+ans[mn//2-1])/2.0
题外话
这个题,看到的第一眼就感觉好熟悉,之前在学习python实现双指针问题时,遇到过,不过这次,是完全按照错误提示,一次又一次的错误中调试过来的,没有去翻之前的程序是如何实现的。好在,终于在努力下,测试通过了。测试提交记录如下图,每次提交,自己都觉得程序没有问题了,但就是有问题,由此,其实也可以看出:
编程路漫漫,吾需上下而求索!!!
对比:程序二和程序一的提交结果,可以发现,其实二者差不多,不过,程序二,确实在设计上,确实更高一筹!