P2679子串(dp)

 题目链接:https://www.luogu.org/problemnew/show/2679

这题目有四个状态dp[2][i][j][k]首先第一个状态1表示选取a[i],0表示不考虑选不选然后i表示已扫过a字符串的前i个元素j表示构造了前j个b子串k表示有k组子串构造而成于是状态转移方程为:dp[1][i][j][k]=(dp[1][i-1][j-1][k]+dp[0][i-1][j-1][k-1])和dp[0][i][j][k]=(dp[1][i][j][k]+dp[0][i][j][k])

然后显然可以看出第二个状态i是可以通过滚动数组“滚掉”的。

下面是代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
using namespace std;
const int maxn=2000;
const int mod=1000000007;
typedef long long int LL;
LL dp[2][300][300]={};
int main()
{
	int n,m,num;
	while(scanf("%d%d%d",&n,&m,&num)==3){
		char a[maxn]={},b[maxn]={};
		scanf("%s%s",a+1,b+1);
		memset(dp,0,sizeof(dp));
		dp[0][0][0]=dp[1][0][0]=1;
		for(int i=1;i<=n;i++)
		for(int j=m;j>=1;j--)    /*在此j一定是从m递推到1因为若从1到m则dp[1][j-1][k]则代表的是i状态下的而不是i-1状态下的*/
		for(int k=1;k<=num;k++){
			if(a[i]!=b[j]){           /* 注意如果不相等一定dp[1][j][k]要清零因为若不清零代表dp[1][i][j][k]=dp[1][i-1][j][k]这样是错的在此我被坑了很长时间*/
				dp[1][j][k]=0;
				continue;
			}
			dp[1][j][k]=(dp[1][j-1][k]+dp[0][j-1][k-1])%mod;
			dp[0][j][k]=(dp[0][j][k]+dp[1][j][k])%mod;
		}
		printf("%lld\n",dp[0][m][num]);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值