NKOJ-1887 借教室 【NOIP2012 day2】

P1887【NOIP2012 day2】借教室
时间限制 : 40000 MS 空间限制 :重点内容 128000 KB
问题描述

    在大学期间,经常需要租借教室。大到院系举办活动,小到学习小组自习讨论,都需要向学校申请借教室。教室的大小功能不同,借教室人的身份不同,借教室的手续也不一样。
    面对海量租借教室的信息,我们自然希望编程解决这个问题。

    我们需要处理接下来n天的借教室信息,其中第i天学校有ri个教室可供租借。共有m份订单,每份订单用三个正整数描述,分别为dj, sj, tj,表示某租借者需要从第sj天到第tj天租借教室(包括第sj天和第tj天),每天需要租借dj个教室。
    我们假定,租借者对教室的大小、地点没有要求。即对于每份订单,我们只需要每天提供dj个教室,而它们具体是哪些教室,每天是否是相同的教室则不用考虑。
    借教室的原则是先到先得,也就是说我们要按照订单的先后顺序依次为每份订单分配教室。如果在分配的过程中遇到一份订单无法完全满足,则需要停止教室的分配,通知当前申请人修改订单。这里的无法满足指从第sj天到第tj天中有至少一天剩余的教室数量不足dj个。
    现在我们需要知道,是否会有订单无法完全满足。如果有,需要通知哪一个申请人修改订单。

输入格式

    第一行包含两个正整数n, m,表示天数和订单的数量。
    第二行包含n个正整数,其中第i个数为ri,表示第i天可用于租借的教室数量。
    接下来有m行,每行包含三个正整数dj, sj, tj,表示租借的数量,租借开始、结束分别在第几天。
    每行相邻的两个数之间均用一个空格隔开。天数与订单均用从1开始的整数编号。

输出格式

    如果所有订单均可满足,则输出只有一行,包含一个整数 0。否则(订单无法完全满足)
    输出两行,第一行输出一个负整数-1,第二行输出需要修改订单的申请人编号。

样例输入

4 3 
2 5 4 3 
2 1 3 
3 2 4 
4 2 4 

样例输出

-1  
2 

提示

输入输出样例说明】
第 1 份订单满足后,4 天剩余的教室数分别为 0,3,2,3。第 2 份订单要求第 2 天到
第 4 天每天提供 3 个教室,而第 3 天剩余的教室数为 2,因此无法满足。分配停止,通知第2 个申请人修改订单。

【数据范围】

对于 10%的数据,有1 ≤ n, m ≤ 10;
对于 30%的数据,有1 ≤ n, m ≤ 1000;
对于 70%的数据,有1 ≤ n, m ≤ 10^5;
对于 100%的数据,有1 ≤ n, m ≤ 10^6, 0 ≤ ri, dj≤ 10^9, 1 ≤ sj≤ tj≤ n。

情不自禁地感叹

有些代码,你没看懂的时候以为是写代码的人脑壳有Trouble

看懂之后,就开始怀疑自己脑壳有没有Trouble了

题解

首先我们说一种新的(对我来说是新的)建树方式

已知数的左边界l,右边界r
那么对于该线段树,它的编号就是(l+r)|(l!=r)

解释

这个建树方式非常巧妙
因为我们知道,线段树的分段的区间是不停地二分的
所以任意两段不同的线段,他们的左边界和右边界之和(l+r)一定不相同

证明一下(此处线段长度>=4)
    假设某线段边界(l+r)
    那么它二分之后,子线段的边界之和
    左线段=l+(l+r)/2  <  l+r
    右线段=(l+r)/2+1+r  >  l+r

    同理易得,子线段的子线段同样满足上述规律


但是有一种情况比较特殊,就是线段和线段的中点的(l+r)是有可能相等的
那么此时,我们就需要一种区分方式
这个时候,就用到了(l+r)|(l!=r)

    l==r时表示这是点
    那么此时 l+r为偶数,(1!=r)==0
    (l+r)|(l!=r)一定为偶数

    l!=r时表示这是线段
    那么此时 l+r 无论为奇数还是偶数,(l!=r)==1
    (l+r)|(l!=r)一定为奇数

此时不同的线段/点的标号也一定不一样(自己参考上面的方法证明)

这样子,线段(点)的标号就可以使用 (l+r)|(l!=r)表示
那么我们要开的数组大小仅为线段长度的2倍

然后就是十分简单的线段树操作了

我们定义emp(empty的缩写)为此时的空房间的数量,lazy(代码中的wait)为滞留的操作

如何定义线段的emp呢??

因为当这一段当中有一个点的emp<0时这段线段就有房间被订满了
我们希望emp能够表示出没有房间的状态
所以我们将线段的emp定位整个线段中最小的空房间数

于是,当某一次修改(订购房间)的操作覆盖了[l,r]的区间时
由于一整段线段的值都要减去订购的房间数(暂定为a)
所以我们将[l,r]的lazy定为(a),表示减去的数量为a

同时,由于我们定义了emp为线段中最小的空房间数
所以emp-a<0时,表示空房间数最小的那一天的空房间已经被过度定购了(不满足题意的可满足解)
我们就可以快速地判断出这一段区间是否能够满足要求

另外,当订购的区间只与[l,r]有交集时,我们就选择先把lazy当中的操作下达下去,再细分线段进行操作(详见代码)
同时要注意,及时地更新大区间的emp

注意

第一点

原本的建树方式即使使用的是相同的思路和解法,也会超时
因为无论是声明结构体,还是不停地通过计算子区间序号和调用子区间的边界,在巨大的数据范围下都是十分庞大的操作
而此处的建树方法能够只通过(l+r)|(l!=r)来计算区间的序号,大大减少了调用次数
同时这种方法也更节省空间

第二点

尽量使lazy数组的操作可叠加
因为可叠加的lazy数组可以一次处理多次下达的指令,时间复杂度和运算量会大大减少(主要是时间复杂度前面的那个常数大大减小了)

第三点(总结)

线段数最大的优势在于
我们在大区间即可确定修改某一个点的值是否合法
要尽量使用这个优点,高效地进行判断

lazy数组最大地优势在于累加操作
对于整段区间的操作都可以累加
直到某个操作只对交集部分操作时才往下进行操作
在写lazy时也要尽量使用这个优势,尽量累加次数,而非简单地推迟一次操作

最后附上代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#define mid (l+r>>1)
using namespace std;

inline int input()
{
    char c=getchar();int o;
    while(c>57||c<48)c=getchar();
    for(o=0;c>47&&c<58;c=getchar())o=(o<<1)+(o<<3)+c-48;
    return o;
}

int ll,rr,ADD;
int emp[2001234],lazy[2001234];

void BT(int l,int r)
{
    int ori=(l+r)|(l!=r);
    if(l<r)
    {
        int ls=(l+mid)|(l!=mid),rs=(mid+1+r)|(mid+1!=r);
        BT(l,mid);
        BT(mid+1,r);
        emp[ori]=min(emp[ls],emp[rs]);//更新大区间的emp
    }
    else emp[ori]=input();//所有的点都是从小到大依次被细分到的
}

bool add(int l,int r)
{
    int ori=(l+r)|(l!=r);
    bool res=1;
    if(ll<=l&&r<=rr)
        if(emp[ori]<ADD)return 0;//在大区间判断修改的合法性
        else
        {
            emp[ori]-=ADD;
            lazy[ori]+=ADD;//累加lazy操作
            return 1;
        }
    //当操作涉及的区域只与[l,r]的子区间相关时
    int ls=(l+mid)|(l!=mid),rs=(mid+1+r)|(mid+1!=r);
    if(lazy[ori]>0)//下达lazy操作
    {
        emp[ls]-=lazy[ori];
        lazy[ls]+=lazy[ori];
        emp[rs]-=lazy[ori];
        lazy[rs]+=lazy[ori];
        lazy[ori]=0;
    }
    if(l!=r)//细分区间进行操作
    {
        if(ll<=mid)res=(res&add(l,mid));
        if(rr>mid)res=(res&add(mid+1,r));
    }
    emp[ori]=min(emp[ls],emp[rs]);//更新emp的值
    return res;
}

int main()
{
    int n=input(),m=input();
    BT(1,n);
    for(int i=1;i<=m;i++)
    {
        ADD=input();ll=input();rr=input();
        if(add(1,n)==0){printf("-1\n%d",i);return 0;}
    }
    printf("0");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>