BZOJ 3160 万径人踪灭

BZOJ 3160 万径人踪灭

读题时请自行跳到第六段(前面的真的是废话)

题解

FFT + Manacher

简单一点

若是忽略题目中的 “不能有连续一段” 的信息 那么我们就可以以每个点作为对称中心
然后寻找每个点作为中心的方案数

找到关于点x对称的相同字符对数Cx
那么方案数P就是 点对的集合的真子集个数
即

Px=2Cx1

找到了每个点的点对数之后 统计一下
一切就都好办了

那么我们的问题在于如何快速找到点对数了
毕竟这个点太多了

仔细想一下
对于每个点p 关于它对称点的下标就一定满足 a+b=2*p
于是 我们想要知道的就是

a+b=2p[cha==chb]

一看就是卷积式对吧!!
然后我们就很自然而然地想到了FFT

如何处理ch[a]==ch[b]的问题呢??

我们就将 '==' 转移 成为 '*'
即 我们分别处理字符为 a 和 字符为 b 的情况

我们将字符为 a 的位置赋为 1 反之则为0
那么在 FFT 之后
就变成了

Pp=a+b=2pA[a]A[b]

当 A[a]==A[b] 时 结果为1
反之结果为0

于是我们就能够分别得到对于 a 和 b 关于p对称的点对数
并且是在 2* Nlog(N) 的时间复杂度的情况下得到所有的点的点对数

然后O(n)处理出 2的n次方 就可以愉快地计算方案数了

开始处理真正的题目

对于这道题目的 不能有连续的一段 如何处理呢??

我们发现 其实真正 连续的一段 都是回文串

我们求出以当前点为中心的极长回文串之后
方案数其实就是当前点的回文串长度L+1/2
(为什么要+1呢 因为当长度为奇数时 单个点也不能算作一种方案)

于是 就可以自然而然地想到了Manacher

对于以上题目中我提到的所有“自然而然想到” 都是假的

问题解决

附上代码

#include <iostream>
#include <cstdio>
#include <cmath>
#include <complex>
#include <cstring>
#define E complex<double>
#define PI acos(-1)
using namespace std;

E A[400123],B[400123];
int rev[400123];

void FFT(E *X,int n,int ty)
{
    E t0,t1;
    for(int i=0;i<n;i++)if(i<rev[i])swap(X[rev[i]],X[i]);
    for(int L=1;L<n;L<<=1)
    {
        E wn(cos(PI/L),ty*sin(PI/L));
        for(int p=0;p<n;p+=(L<<1))
        {
            E w(1,0);
            for(int np=p;np<p+L;np++,w*=wn)
            {
                t0=X[np];t1=w*X[np+L];
                X[np]=t0+t1;X[np+L]=t0-t1;
            }
        }
    }
    if(ty==-1)for(int i=0;i<n;i++)X[i]/=n;
}

char ch[400123];int Len[400123],L;
long long n,sum[400123],bin[400123],res=0,mod=1000000007;

int MC()
{
    long long res=0;
    int N=n<<1,maxL=0,maxp=0;
    for(int i=N;i;i--)ch[i]='#',ch[--i]=ch[i>>1];
    ch[0]='#';
    for(int p=1;p<=N;p++)
    {
        if(p<maxL)L=min(Len[(maxp<<1)-p],maxL-p);
        else L=0;
        while(p-L-1>=0&&p+L+1<=N&&ch[p-L-1]==ch[p+L+1])L++;
        Len[p]=L;res=(res+(L+1>>1))%mod;
        if(p+L>maxp)maxL=p+L,maxp=p;
    }
    return res;
}

void Bin()
{
    bin[0]=1;
    for(int i=1;i<=n;i++)bin[i]=(bin[i-1]<<1)%mod;
}

int main()
{
    //freopen("In.txt","r",stdin);
    scanf("%s",ch);
    n=strlen(ch);
    int N=1,L=0;
    long long nsum;
    while(N<=(n<<1))N<<=1,L++;L--;
    for(int i=0;i<N;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<L);

    for(int i=0;i<n;i++)A[i]=(ch[i]=='a');
    FFT(A,N,1);
    for(int i=0;i<N;i++)B[i]=(A[i]*A[i]);

    memset(A,0,sizeof A);
    for(int i=0;i<n;i++)A[i]=(ch[i]=='b');
    FFT(A,N,1);
    for(int i=0;i<N;i++)B[i]+=(A[i]*A[i]);
    FFT(B,N,-1);
    for(int i=2;i<=(n<<1);i++)sum[i]=(long long)(B[i-2].real()+0.5);
    Bin();
    for(int i=2;i<=(n<<1);i++)res=(res+bin[sum[i]+1>>1]-1)%mod;

    res=res+mod-MC();
    printf("%lld",res%mod);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值