【深度学习】“复杂场景下基于深度学习的卷积神经网络在鸟类多类别识别中的模型设计与性能优化研究“(中)

【深度学习】“复杂场景下基于深度学习的卷积神经网络在鸟类多类别识别中的模型设计与性能优化研究”(中)

大家好 我是寸铁👊
【深度学习】“复杂场景下基于深度学习的卷积神经网络在鸟类多类别识别中的模型设计与性能优化研究”(中)✨
喜欢的小伙伴可以点点关注 💝

在这里插入图片描述


前言

本次【深度学习】"复杂场景下基于深度学习的卷积神经网络在鸟类多类别识别中的模型设计与性能优化研究"分为上、中、下三个部分,后续持续更新,感兴趣的朋友可以继续关注~

代码无偿,记得进入网站fork一下谢谢!
全部源代码地址:

github.com/Joyflower/Brid_CCN/tree/master/

随着科技的进步和深度学习技术的广泛应用,卷积神经网络(CNN)作为一种强大的图像识别工具,在复杂环境中的应用日益引起关注。特别是在鸟类多类别识别这一领域,CNN展现出了巨大的潜力和应用前景。然而,面对复杂场景下的挑战,如光照变化、背景噪声和鸟类姿态的多样性,如何设计和优化CNN模型以提高识别的准确性和鲁棒性仍然是一个重要的研究课题。
本研究旨在探索基于深度学习的卷积神经网络在鸟类多类别识别中的应用潜力,通过深入分析模型设计和性能优化的方法,以应对复杂环境带来的挑战。通过系统的实验验证和性能评估,本研究试图为解决实际应用中的识别难题提供创新的解决方案和理论支持。


模型构建

模型训练流程图

			图17 模型构建、编译流程图

在这里插入图片描述

由上图17得,模型构建、编译流程如下:
(1) 先构建模型,堆叠卷积神经网络不同类型的层来逐步提取输入图像的特征。
(2) 再编译模型,保存模型的回调函数。
(3) 然后,传入训练集、测试集,进行模型的训练。
(4) 最后,绘制准确率、损失曲线、混淆矩阵,编写图像分类报告。保存到指定的文件夹。

设置机器参数

在创建训练模型之前可以先根据需求读取线程,设置模型的训练量和缓冲区的大小。
接下来,通过map方法配置数据集,在使用数据集时自动调用线程。
首先,使用AUTOTUNE = tf.data.experimental.AUTOTUNE:这里设置了一个自动调整参数,用于自动选择最佳的并行处理线程数。
接着,使用 map 函数应用了load_img函数,将图像数据加载并进行预处理。load_img 函数的入参为原始图像数据,出参为经过预处理后的图像数据。num_parallel_calls 参数指定了并行处理的线程数,得到加载处理后的训练集、测试集。利用了 TensorFlow 提供的并行处理机制,加速数据加载和预处理的过程。
最后,分别设置训练数据集的批量大小和缓冲区大小BATCH_SIZE = 24 BUFFER_SIZE = 1000,批量大小决定了每次训练时模型使用的样本数量,缓冲区大小用于在数据加载过程中进行样本打乱操作的缓冲。选择 BATCH_SIZE = 24 BUFFER_SIZE = 1000 的设置是在考虑了可用的硬件资源、数据集大小和分布情况后得出的一个合理选择,既能充分利用计算资源,又能保持数据加载和训练的高效率。如下图18所示。

在这里插入图片描述

			图18 线程与缓冲区设置

测试集、训练集的预取、打乱

然后,继续对训练数据集和测试数据集的打乱、分批次和预取数据的操作。调用shuffle 函数用于打乱数据集,batch 函数用于将数据集划分成批次,prefetch 函数用于提前从输入数据集中预取数据,以减少训练过程中的等待时间,使得模型在训练时能够更加高效地利用计算资源。对训练数据集和测试数据集进行预处理、构建数据加载和处理的管道,并使用 TensorFlow 提供的并行处理机制加速数据处理过程,以及利用缓冲和预取机制提高数据加载和训练效率。如下图19所示。

在这里插入图片描述

			图19 打乱、分批次、预取数据

构建CNN模型

输入图片规格

首先,定义输入图片的形状规格大小为256x256像素,3个颜色通道(RGB)。如下图20所示:

评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寸 铁

感谢您的支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值