ISM 模型

ISM(解释结构模型法)是一种用于系统工程的分析方法,它通过有向图和邻接矩阵来表征系统中各元素的逻辑关系。文章介绍了邻接矩阵的概念、运算法则,以及如何构建ISM模型,包括可达矩阵的确定和层级分解过程,最终找出影响系统最根本的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ISM



ISM背景简介

ISM 全称为 Interpretative Structural Modelling Method ,中文名为 解释结构模型法。是一种在系统工程领域常用的分析方法,它能够发现系统中的一般模式。

  • 什么为系统结构?
      我们常用诸多因素来表征一个系统,而因素之间的逻辑关系就是一种系统结构。我们经常使用有向图模型来表征这种逻辑关系构成的结构。

  • 有向图的简单介绍
      图的基本元素由点和边构成,其中边分为无向边和有向边;在上条中提到的有向图是由点和有向边构成的图。

  所以我们经常用有向图来表征系统结构,其中图中的点代表了系统中的不同元素,有向边代表了元素之间的逻辑关系。

  • 邻接矩阵
      图的另一种等价表示就是的邻接矩阵表示。矩阵的维度为点的个数;矩阵的元素取值只有0和1,为对应两个点的边是否存在(对应无向图),或者边的指向(对应于有向图)。所以无向图的邻接矩阵是对称矩阵,而有向图的邻接矩阵并没有这样的性质。

  • 邻接矩阵元素的运算法则
      邻接矩阵的元素运算为布尔运算:
    0 + 0 = 0 , 0 + 1 = 1 , 1 + 1 = 1 0+0 = 0,0+1 = 1,1+1 = 1 0+0=0,0+1=1,1+1=1 1 ∗ 0 = 0 , 0 ∗ 1 = 0 , 1 ∗ 1 = 1 1*0 = 0,0*1 = 0,1*1 = 1 10=0,01=0,11=1


ISM 模型准备

  首先我们需要将各个元素之间的关系转化成邻接矩阵的形式。

定义
a i j = { 1 S i 对 S j 有 影 响 0 S i 对 S j 无 影 响 a_{ij} = \begin{cases} 1 & S_i对S_j有影响 \\ 0 & S_i对S_j无影响 \end{cases} aij={ 10S

### ISM模型简介 ISM (Influence Specification Model) 是一种用于分析复杂系统中各要素之间相互影响程度的方法。此方法广泛应用于供应链管理、项目管理和风险评估等领域。然而,在提供的参考资料中并未找到直接提及ISM模型的具体实现细节[^1]。 为了满足需求,下面提供一个简化版的ISM模型Python代码实现示例: ```python import networkx as nx import matplotlib.pyplot as plt def build_reachability_matrix(elements): """构建可达矩阵""" n = len(elements) reachability_matrix = [[0]*n for _ in range(n)] # 初始化邻接矩阵(这里假设已知) adjacency_matrix = [ [0, 1, 0], [0, 0, 1], [0, 0, 0] ] # 计算传递闭包得到可达矩阵 for k in range(n): for i in range(n): for j in range(n): reachability_matrix[i][j] |= adjacency_matrix[i][k] & adjacency_matrix[k][j] return reachability_matrix def draw_graph(reachability_matrix, elements): """绘制图形展示节点间的关系""" G = nx.DiGraph() for idx, element in enumerate(elements): G.add_node(element) for i in range(len(reachability_matrix)): for j in range(len(reachability_matrix[0])): if reachability_matrix[i][j]: G.add_edge(elements[i], elements[j]) pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, node_size=700) nx.draw_networkx_edges(G, pos, arrowstyle='->', arrowsize=20) nx.draw_networkx_labels(G, pos) plt.show() if __name__ == "__main__": elements = ["A", "B", "C"] rm = build_reachability_matrix(elements) print("Reachability Matrix:") for row in rm: print(row) draw_graph(rm, elements) ``` 这段代码实现了基本的功能框架来创建和可视化ISM模型中的可达性图。需要注意的是实际应用时可能需要根据具体场景调整算法逻辑以及输入参数设置。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值