判断一个整数是否是回文数。回文数是指正序(从左向右)和倒序(从右向左)读都是一样的整数。
示例 1:
输入: 121
输出: true
示例 2:
输入: -121
输出: false
解释: 从左向右读, 为 -121 。 从右向左读, 为 121- 。因此它不是一个回文数。
示例 3:
输入: 10
输出: false
解释: 从右向左读, 为 01 。因此它不是一个回文数。
解法1:
整数转化为字符串
#include <iostream>
#include <string>
using namespace std;
class Solution {
public:
bool isPalindrome(int x)
{
if(x < 0)
return false;
bool ret = true;
string str = to_string(x);
for(int i=0; i<str.length(); i++)
{
if(str[i] != str[str.length()-1-i])
return false;
}
return ret;
}
};
int main()
{
Solution s;
cout << s.isPalindrome(1212156) << endl;
return 0;
}
解法2:
数学解法,通过取整和取余操作获取整数中对应的数字进行比较
eg:1221
1221/1000 = 1
1221%10 = 1;
通过比较相等,把22取出
(1221%1000)/10 = 22
22/10 = 2
22%10=2
回文数
#include <iostream>
#include <string>
using namespace std;
class Solution {
public:
bool isPalindrome(int x)
{
//负数直接返回
if(x < 0)
return false;
//确定第一次的 除数
int div = 1;
while(x / div >= 10)
div *= 10;
while(x > 0)
{
int left = x / div;
int right = x % 10;
if(left != right)
return false;
x = (x % div) / 10;//跟新x
div /= 100;//因为如果left == right的话 每一次去掉的首和尾,相当于缩小100倍
}
return true;
}
};
int main()
{
Solution s;
cout << s.isPalindrome(121) << endl;
return 0;
}
解法3:
直观上来看回文数,就感觉是将数字进行对折后看能否一一对应。
取出后半段数字进行翻转,需注意回文数的长度可能是奇数也可能是偶数
如果是偶数,那么对折过来两者长度相等
如果是奇数,那么对折过来有一个的长度需要去掉一位数
#include <iostream>
#include <string>
using namespace std;
class Solution {
public:
bool isPalindrome(int x)
{
// 当 x < 0 时,x 不是回文数。
// 如果数字的最后一位是 0,
if(x < 0 || (x % 10 == 0 && x != 0))
return false;
int revertedNumber = 0;
//循环终止条件x < revertedNumber 说明数字已经对半或者过半了
while(x > revertedNumber)
{
revertedNumber = revertedNumber * 10 + x % 10;
x /= 10;
}
// 当数字长度为奇数时,我们可以通过 revertedNumber/10 去除处于中位的数字。
// 例如,当输入为 12321 时,在 while 循环的末尾我们可以得到 x = 12,revertedNumber = 123,
// 由于处于中位的数字不影响回文(它总是与自己相等),所以我们可以简单地将其去除。
return x == revertedNumber || x == revertedNumber/10;
}
};
int main()
{
Solution s;
cout << s.isPalindrome(121) << endl;
return 0;
}